精英家教网 > 初中数学 > 题目详情
(2013•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是(  )
分析:由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.
解答:解:矩形ABCD的面积S=2S△ABC,而S△ABC=
1
2
S矩形AEFC,即S1=S2
故选B.
点评:本题主要考查了矩形的性质及面积的计算,能够熟练运用矩形的性质进行一些面积的计算问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•包头)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
(1)如图①,当
CE
EB
=
1
3
时,求
S△CEF
S△CDF
的值;
(2)如图②当DE平分∠CDB时,求证:AF=
2
OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=
1
2
BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=
28
28
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)如图,一根长6
3
米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.
(1)求OB的长;
(2)当AA′=1米时,求BB′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

查看答案和解析>>

同步练习册答案