精英家教网 > 初中数学 > 题目详情

已知图,在矩形ABCD中AB=BC,在AD上取E,BE=BC,则∠1________度,∠2________度,∠3________度.

答案:
解析:

  ∠1=,∠2=,∠3=

  矩形ABCDAB=CD=BC=BE∠1=

  ∠1=∠EBA=∠2=

  ∠2=∠ECB=∠3=


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:AE=DF;
(2)若添加条件
∠BAC=90°
,则四边形AEDF是矩形;
若添加条件
AB=AC
,则四边形AEDF是菱形;
若添加条件
△ABC是等腰直角三角形
,则四边形AEDF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形DEFG的一组对边DE、GF截等边三角形ABC的两边AB、AC均成三等分,点G、F分别在AB、AC上,已知图中两个三角形(阴影部分)的面积和为
3
,则等边△ABC的边长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,cosA=
4
5
,点P在线段AC上,过点P作PE⊥AB,PD∥AB交精英家教网BC于D,过点D作DF⊥AB于点F.设PE的长为x,PD的长为y,已知y是x的函数,其图象经过点(
24
5
,15)
(1)求y与x之间的函数关系式;
(2)求线段AC的长;
(3)当x为何值时,矩形PEFD的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•通州区一模)小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:
①作点A关于直线l的对称点A′.
②连接A′B,交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:
(1)如图1,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.
①在图1中作出点P.(三角板、刻度尺作图,保留作图痕迹,不写作法)
②请直接写出△PDE周长的最小值
8
8

(2)如图2在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值
6+3
10
6+3
10

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,已知AB=1,BC=2,∠ABC的平分线交AD于点F,E为BC的中点,连接EF.
(1)求BF的长度;
(2)求证:四边形ABEF是正方形;
(3)设点P是线段BF上的一个动点,点N是矩形ABCD的对称中心,是否存在点P,使∠APN=90°?若存在,请直接写出BP的长度;若不存在请说明理由.

查看答案和解析>>

同步练习册答案