分析 (1)连接OM,由切线性质得PM=PA,OM⊥MP,BA⊥AC,由直角三角形的性质得∠B+∠C=90°,因为,∠BMO+∠CMP=90°,∠B=∠BMO,等量代换得∠C=∠CMP,得出结论;
(2)利用(1)的结论,∠C=∠CMP,利用勾股定理得BC,求得cos∠C即可得出结论.
解答 (1)证明:连接OM,
∵直线AC与⊙O相切于点A,PM与⊙O相切于点M,
∴PM=PA,OM⊥MP,BA⊥AC,
∴∠OMP=90°,∠BAC=90°,
∴∠B+∠C=90°,∠BMO+∠CMP=90°,
∵∠B=∠BMO,
∴∠C=∠CMP,
∴PM=PC;
(2)解:∵∠C=∠CMP,
在直角△ABC中,AB=6,AC=8,
∴BC=$\sqrt{{AB}^{2}{+AC}^{2}}$=$\sqrt{{6}^{2}{+8}^{2}}$=10,
cos∠C=$\frac{AC}{BC}$=$\frac{4}{5}$,
∴cos∠PMC=$\frac{4}{5}$.
点评 本题主要考查了切线的性质,勾股定理,作出辅助线得∠C=∠CMP是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 48盆 | B. | 49盆 | C. | 50盆 | D. | .51盆 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com