精英家教网 > 初中数学 > 题目详情

抛物线l1:y=-x2+2x与x轴的交点为O、A,顶点为D,抛物线l2与抛物线l1关于y轴对称,与x轴的交点为O、B,顶点为C,线段CD交y轴于点E.
(1)求抛物线l2的顶点C的坐标及抛物线l2的解析式;
(2)设P是抛物线l1上与D、O两点不重合的任意一点,Q点是P点关于y轴的对称点,试判断以P、Q、C、D为顶点的四边形是什么特殊的四边形(直接写出结论)?
(3)在抛物线l1上是否存在点M,使得S△ABM=S四边形AOED?如果存在,求出M的坐标,如果不存在,请说明理由.

解:(1)∵l1:y=-x2+2x,抛物线l2与抛物线l1关于y轴对称,
∴l2:y=-x2-2x=-(x+1)2+1,
∴顶点C的坐标是(-1,1);
(2)

根据所画图形可得四边形PQCD是矩形或等腰梯形.
(3)存在.
设满足条件的M点坐标为(x,y),
连接MA、MB、AD,以题意得A(2,0),B(-2,0),E(0,1),
S梯形AOED=(ED+OA)×OE==
①当y>0时,S△ABM=×4×y=
解得:y=
将y=代入l2的解析式,可得-x2+2x=
解得:x1=,x2=
故M1),M2);
②当y<0时,S△ABM=×4×(-y)=
解得:y=-
将y=代入l2的解析式,可得-x2+2x=-
解得:x1=,x2=
故M3),M4);
综上可得点M的坐标为M1),M2),M3,-),M4,-).
分析:(1)由于l1、l2关于y轴对称,那它们的顶点坐标关于y轴对称,而开口大小、开口方向、与y轴的交点都相同,据此可求出l2的解析式;
(2)结合图形即可得出答案.
(3)先求出四边形AOED的面积,然后设出点M的坐标,根据S△ABM=S四边形AOED,可得出关于y的方程,将y的值代入l1的解析式即可得出点M的坐标.
点评:本题属于二次函数的综合题,涉及了抛物线的对称变换、三角形的面积及梯形的知识,解答本题的关键是数形结合,根据面积关系得出方程求解,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线l1:y=-x2平移得到抛物线l2,且经过点O(0,0)和点A(4,0),l2的顶点为点B,它的对称轴与l2相交于点C,设l1、l2与BC围成的阴影部分面积为S,解答下列问题:
(1)求l2表示的函数解析式及它的对称轴,顶点的坐标.
(2)求点C的坐标,并直接写出S的值.
(3)在直线AC上是否存在点P,使得S△POA=
1
2
S?若存在,求点P的坐标;若不存在,请说明理由.
【参考公式:抛物线y=ax2+bx+c 的对称轴是x=-
b
2a
,顶点坐标是(-
b
2a
4ac-b2
4a
)】.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点A的坐标为(-1,0),点B的坐标为(3,0),二次函数y=x2的图象记为抛物线l1
精英家教网
(1)平移抛物线l1,使平移后的抛物线经过A、B两点,记为抛物线l2,求抛物线l2的函数表达式;
(2)设抛物线l2的顶点为C,请你判断y轴上是否存在点K,使得∠BKC=90°,若存在,求出K点坐标,若不存在,请说明理由;
(3)抛物线l2与y轴交于点D,点P是线段BD上的一个动点,过点P,作y轴的平行线,交抛物线l2于点E,求线段PE长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数y=-x2的图象为l1
精英家教网
(1)沿y轴向下平移抛物线l1,使平移后的抛物线过点A,写出平移后的抛物线的解析式;
(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图(2),求抛物线l2的函数解析式及顶点C的坐标;
(3)抛物线l2上是否存在点Q,使△QAB为等腰三角形?若存在,请在图(2)中画出来,并简要说明画法;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•自贡)如图,抛物线l交x轴于点A(-3,0)、B(1,0),交y轴于点C(0,-3).将抛物线l沿y轴翻折得抛物线l1
(1)求l1的解析式;
(2)在l1的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;
(3)平行于x轴的一条直线交抛物线l1于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线l1:y1=a(x+1)2+2与l2:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:
①无论x取何值,y2总是负数;
②l2可由l1向右平移3个单位,再向下平移3个单位得到;
③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;
④四边形AECD为正方形.
其中正确的是(  )

查看答案和解析>>

同步练习册答案