精英家教网 > 初中数学 > 题目详情

如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC分别交于点D,点E,过点D作DF⊥AC,垂足为点F.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H.若等边△ABC的边长为4,求FH的长.
(结果保留根号)

解:(1)DF与⊙O相切.
证明:连接OD,
∵△ABC是等边三角形,DF⊥AC,
∴∠ADF=30°.
∵OB=OD,∠DBO=60°,
∴∠BDO=60°.
∴∠ODF=180°-∠BDO-∠ADF=90°.
∴DF是⊙O的切线.

(2)∵△BOD、△ABC是等边三角形,
∴∠BDO=∠A=60°,
∴OD∥AC,
∵O是BC的中点,
∴OD是△ABC的中位线,
∴AD=BD=2,
又∵∠ADF=90°-60°=30°,
∴AF=1.
∴FC=AC-AF=3.
∵FH⊥BC,
∴∠FHC=90°.
在Rt△FHC中,sin∠FCH=
∴FH=FC•sin60°=
即FH的长为
分析:(1)连接OD,证∠ODF=90°即可.
(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FH长.
点评:判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC的中位线DE的长为1,
则下面结论中正确的是
 
.(填序号)精英家教网
①AB=2;②△DAE≌△BAC;
③△DAE的周长与△BAC的周长之比为1:3;
④△DAE的面积与△BAC的面积之比为1:4.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC的边长为2,AD是BC边上的高.
(1)在△ABC内部作一个矩形EFGH(如图①),其中E、H分别在边AB、AC上,FG在边BC上.
①设矩形的一边FG=x,那么EF=
 
;(用含有x的代数式表示)精英家教网
②设矩形的面积为y,当x取何值时,y的值最大,最大值是多少?
(2)当矩形EFGH面积最大时,请在图②中画出此时点E的位置.(要求尺规作图,保留作图痕迹,并简要说明确定点E的方法)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄浦区二模)如图,已知等边△ABC的边长为1,设
n
=
AB
+
BC
,那么向量
n
的模|
n
|=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•临夏州)[(1)-(3),10分]如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)证明图(2)所得结论;
(3)证明图(4)所得结论.
(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;图(4)与图(6)中的等式有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC的边长为10,点P、Q分别为边AB、AC上的一个动点,点P从点B出发以1cm/s的速度向点A运动,点Q从点C出发以2cm/s的速度向点A运动,连接PQ,以Q为旋转中心,将线段PQ按逆时针方向旋转60°得线段QD,若点P、Q同时出发,则当运动
10
3
10
3
s时,点D恰好落在BC边上.

查看答案和解析>>

同步练习册答案