精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.

(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.

(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;(2);(3)

解析试题分析:(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;
(2)利用S四边形AEDF=SAED+SADF=SCFD+SADF=SADC="9" 即可得到y与x之间的函数关系式;
(3)依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到SADF=SBDE从而得到SEDF=SEAF+SADB即可确定两个变量之间的函数关系式.
(1)∵∠BAC=90° AB=AC=6,D为BC中点
∴∠BAD=∠DAC=∠B=∠C=45°    
∴AD=BD=DC
∵AE=CF
∴△AED≌△CFD(SAS)    
(2)依题意有:FC=AE=x,
∵△AED≌△CFD
∴S四边形AEDF=SAED+SADF=SCFD+SADF=SADC=9     
∴SEDF=S四边形AEDF-SAEF=9-(6-x)x=x2-3x+9

(3)依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°
∴∠DAF=∠DBE=135°    
∴△ADF≌△BDE    
∴SADF=SBDE
∴SEDF=SEAF+SADB=(x-6)x+9=x2-3x+9

考点:动点问题的综合题
点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案