精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.

(1)求证:ADED;

(2)若CD=4,AF=2,求⊙O的半径.

【答案】(1)证明见解析;(2)O的半径为

【解析】(1)连接OC,如图,先证明OCAD,然后利用切线的性质得OCDE,从而得到ADED;

(2)OCBFH,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH为矩形得到FH=CD=4,CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.

(1)证明:连接OC,如图,

AC平分∠BAD,

∴∠1=2,

OA=OC,

∴∠1=3,

∴∠2=3,

OCAD,

ED切⊙O于点C,

OCDE,

ADED;

(2)解:OCBFH,如图,

AB为直径,

∴∠AFB=90°,

易得四边形CDFH为矩形,

FH=CD=4,CHF=90°,

OHBF,

BH=FH=4,

BF=8,

RtABF中,AB=

∴⊙O的半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若化简|1-x|-的结果为2x5,则x的取值范围是(  )

A. x为任意实数B. 1x4 C. x1D. x4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在ABC中,∠C=90°AD是∠BAC的平分线,DEABEFAC上,BD=DF

求证:(1CF=EB

2AB=AF+2EB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点ABC在小正方形的顶点上.

在图中画出与关于直线l成轴对称的

三角形ABC的面积为______;

AC为边作与全等的三角形,则可作出______个三角形与全等;

在直线l上找一点P,使的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=AC=10cmBC=8cm,点DAB的中点.如果点P在线段BC上以3cm/s的速度由点BC点运动,同时,点Q在线段CA上由点CA点运动.

1)若点Q的运动速度与点P的运动速度相等,经过1秒后,BPDCQP是否全等,请说明理由.

2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPDCQP全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,BD为一条对角线,EAD的中点,连接BE

1)求证:四边形BCDE为菱形;

2)连接AC,若AC平分,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在下列条件中,不能作为判断ABD≌△BAC的条件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点A,B在圆上,BC,AD分别与该圆相交于点E,F,G是弧AF的三等分点(弧AG>弧GF),BGAF于点H.若弧AB的度数为30°,则∠GHF等于( )

A. 40° B. 45° C. 55° D. 80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点Cx轴下方,且使OCA∽△OBC.

(1)求线段OC的长度;

(2)设直线BCy轴交于点M,点CBM的中点时,求直线BM和抛物线的解析式;

(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案