【题目】如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.
(1)求证:AD⊥ED;
(2)若CD=4,AF=2,求⊙O的半径.
【答案】(1)证明见解析;(2)⊙O的半径为.
【解析】(1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;
(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.
详(1)证明:连接OC,如图,
∵AC平分∠BAD,
∴∠1=∠2,
∵OA=OC,
∴∠1=∠3,
∴∠2=∠3,
∴OC∥AD,
∵ED切⊙O于点C,
∴OC⊥DE,
∴AD⊥ED;
(2)解:OC交BF于H,如图,
∵AB为直径,
∴∠AFB=90°,
易得四边形CDFH为矩形,
∴FH=CD=4,∠CHF=90°,
∴OH⊥BF,
∴BH=FH=4,
∴BF=8,
在Rt△ABF中,AB=,
∴⊙O的半径为.
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
求证:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
在图中画出与关于直线l成轴对称的;
三角形ABC的面积为______;
以AC为边作与全等的三角形,则可作出______个三角形与全等;
在直线l上找一点P,使的长最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,BD为一条对角线,且,,E为AD的中点,连接BE.
(1)求证:四边形BCDE为菱形;
(2)连接AC,若AC平分,,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A,B在圆上,BC,AD分别与该圆相交于点E,F,G是弧AF的三等分点(弧AG>弧GF),BG交AF于点H.若弧AB的度数为30°,则∠GHF等于( )
A. 40° B. 45° C. 55° D. 80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.
(1)求线段OC的长度;
(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;
(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com