精英家教网 > 初中数学 > 题目详情

【题目】山西省每年的体育考试分成必考科目与选考科目两部分.其中选考科目是从一分钟跳绳、掷实心球、坐位体前屈、仰卧起坐四个项目中选取一项.王红与李丽是一对好朋友且都在2020年参加中考,实心球是她俩的弱项,其他三项都非常强,体育考试选考的四个项目中,她俩一定不会选实心球.

1)王红在选考项目中,选中坐位体前屈的概率是

2)王红与李丽选取同一个选考项目的概率是多少? (在画树状图或列表时,“一分钟跳绳"用“”表示,“坐位体前屈”用“"表示,“仰卧起坐”用“”表示,“掷实心球”用“”表示)

3)通过对我省某市2020年参加中考的学生进行随机调查,发现该市选择“坐位体前屈”的学生的频率稳定在左右,已知该市有人参加2020年中考体育,请由此估计该市这名学生中选择“坐位体前屈”的人数.

【答案】1;(2;(327000

【解析】

1)根据概率公式直接求解即可;

2)通过画树状图或列表来求即可;

(3)利用频率估计概率,再根据概率公式直接求得即可.

解:(1)王红在选考项目中,选择方法有3种,选中坐位体前屈的选法只有1 种,所以,王红选中坐位体前屈的概率是

根据题意,列表如下:

王红

李丽

由表可知,共有 种等可能的结果,其中王红与李丽选相同项目的只有

(王红与李丽选取同一个选考项目)

(人)

答:该市 2020 年中考体育选考选坐位体前屈的人数约有人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EBC上的一点,连接AE,过B点作BHAE,垂足为点H,延长BHCD于点F,连接AF.

(1)求证AE=BF;

(2)若正方形的边长是5,BE=2,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在线段BD上,在BD的同侧作等腰RtABC和等腰RtADE,其中∠ABC=AED=90°CDBEAE分别交于点PM.对于下列结论:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正确的是(  )

A. ①②B. ①②③C. ①②③④D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在处测得灯塔在北偏东方向上,继续航行1小时到达处,此时测得灯塔在北偏东方向上.

(1)求的度数;

(2)已知在灯塔的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段围成一个正方形.

1)要使这两个正方形的面积之和等于,小明该怎么剪?

2)小刚对小明说:这两个正方形的面积之和不可能等于.”小刚的说法对吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ABC=120°,AC=2O是△ABC的外接圆,D上任意一点(不包括点AC),顺次连接四边形ABCD四边中点得到四边形EFGH,则四边形EFGH的周长的最大值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(概念提出)如图,若正△DEF的三个顶点分别在正△ABC的边ABBCAC上,则我们称△DEF是正△ABC的内接正三角形.

1)求证:△ADF≌△BED

(问题解决)利用直尺和圆规作正三角形的内接正三角形(保留作图痕迹,不写作法)

2)如图,正△ABC的边长为a,作正△ABC的内接正△DEF,使△DEF的边长最短,并说明理由;

3)如图,作正△ABC的内接正△DEF,使FDAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数CD与一次函数AB,都经过点B-1,4.

1)求两条直线的解析式;

2)求四边形ABDO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°AC=8cmAB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点PPDACAC于点D,将APD沿PD翻折得到A′PD,以A′PPB为邻边作A′PBEA′E交射线BC于点F,交射线PQ于点G.设A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts

1)当t为何值时,点A′与点C重合;

2)用含t的代数式表示QF的长;

3)求St的函数关系式;

4)请直接写出当射线PQA′PBE分成的两部分图形的面积之比是13t的值.

查看答案和解析>>

同步练习册答案