分析 设点P的坐标为(0,x),分两种情况:①当点B为直角顶点时,点P在y轴正半轴;②当点A为直角顶点时,点P在y轴负半轴;分别由勾股定理得出方程,解方程即可.
解答 解:设点P的坐标为(0,x),
分两种情况:
①当点B为直角顶点时,点P在y轴正半轴,
作AD⊥y轴于D,BE⊥y轴于E,BF⊥x轴于F,如图1所示:
由勾股定理得:PB2+AB2=PA2,
即12+(4-x)2+32+32=(x-1)2+42,
解得:x=3,
∴点P的坐标为(0,3)
②当点A为直角顶点时,点P在y轴负半轴,
作AD⊥y轴于D,BE⊥y轴于E,如图2所示:
由勾股定理得:PA2+AB2=PB2,
即42+(1-x)2+32+32=(4-x)2+12,
解得:x=-3,
∴点P的坐标为(0,-3);
综上所述:如果△ABP是直角三角形,点P的坐标为(0,3)或(0,-3).
点评 本题考查了勾股定理、坐标与图形性质;熟练掌握勾股定理,根据题意运用勾股定理得出方程是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com