精英家教网 > 初中数学 > 题目详情

如图,抛物线y=数学公式x2-mx+n与x轴交于A、B两点,与y轴交于点C(0.-1).且对称轴x=1.
(1)求出抛物线的解析式及A、B两点的坐标;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3?若存在,求出点D的坐标;若不存在.说明理由(使用图1);
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).

解:(1)∵抛物线与y轴交于点C(0.-1).且对称轴x=l.
,解得:
∴抛物线解析式为y=x2-x-1,
x2-x-1=0,得:x1=-1,x2=3,
∴A(-1,0),B(3,0),

(2)设在x轴下方的抛物线上存在D(a,)(0<a<3)使四边形ABCD的面积为3.
作DM⊥x轴于M,则S四边形ABDC=S△AOC+S梯形OCDM+S△BMD
∴S四边形ABDC=|xAyC|+(|yD|+|yC|)xM+(xB-xM)|yD|
=×1×1+[-(a2-a-1)+1]×a+(3-a)[-(a2-a-1)]
=-a2++2,
∴由-a2++2=3,
解得:a1=1,a2=2,
∴D的纵坐标为:a2-a-1=-或-1,
∴点D的坐标为(1,-),(2,-1);

(3)①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,所以点P的横坐标为-4或4,
当x=-4时,y=7;当x=4时,y=
所以此时点P1的坐标为(-4,7),P2的坐标为(4,);
②当AB为对角线时,只要线段PQ与线段AB互相平分即可,线段AB中点为G,PQ必过G点且与y轴交于Q点,
过点P3作x轴的垂线交于点H,
可证得△P3HG≌△Q3OG,
∴GO=GH,
∵线段AB的中点G的横坐标为1,
∴此时点P横坐标为2,
由此当x=2时,y=-1,
∴这是有符合条件的点P3(2,-1),
∴所以符合条件的点为:P1的坐标为(-4,7),P2的坐标为(4,);P3(2,-1).
分析:(1)根据二次函数对称轴公式以及二次函数经过(0.-1)点即可得出答案;
(2)根据S四边形ABDC=S△AOC+S梯形OCDM+S△BMD,表示出关于a的一元二次方程求出即可;
(3)分别从当AB为边时,只要PQ∥AB,且PQ=AB=4即可以及当AB为对角线时,只要线段PQ与线段AB互相平分即可,分别求出即可.
点评:此题主要考查了二次函数的综合应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y
0(填“>”“=”或“<”号).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线y=x2+(k2+1)x+k+1的对称轴是直线x=-1,且顶点在x轴上方.设M是直线x=-1左侧抛物线上的一动点,过点M作x轴的垂线MG,垂足为G,过点M作直线x=-1的垂线MN,垂足为N,直线x=-1与x轴的交于H点,若M点的横坐标为x,矩形MNHG的周长为l.
(1)求出k的值;
(2)写出l关于x的函数解析式;
(3)是否存在点M,使矩形MNHG的周长最小?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,抛物线y=x2-2x-8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2-2x-3与x轴分别交于A,B两点.
(1)求A,B两点的坐标;
(2)求抛物线顶点M关于x轴对称的点M′的坐标,并判断四边形AMBM′是何特殊平行四边形.(不要求说明理由)

查看答案和解析>>

同步练习册答案