【题目】定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1在中,若,则是“和谐三角形”.
(1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).
(2)若中,,,,,且,若是“和谐三角形”,求.
(3)如图2,在等边三角形的边,上各取一点,,且,,相交于点,是的高,若是“和谐三角形”,且.
①求证:.
②连结,若,那么线段,,能否组成一个“和谐三角形”?若能,请给出证明:若不能,请说明理由.
【答案】(1)真;(2).(3)能,证明见解析
【解析】
(1)利用“和谐三角形”的定义验证即可;
(2)若是“和谐三角形”,分,,三种情况,分别进行讨论即可;
(3)①先利用是“和谐三角形”和第(2)问的结论得出,然后再利用等边三角形的性质证明,则结论可证;
②先证明,得出,设出,,然后分别表示出,然后用“和谐三角形”定义验证即可.
(1)设等边三角形三边分别为a,b,c
∵三角形为等边三角形
∴a=b=c
∵
∴等边三角形是“和谐三角形”
故答案为“真”
(2)∵,,,,
∴.
①若,则.(舍去)
②若,则,
∴,得.
由勾股定理得
∴.
③若,则,
∴,得.
由勾股定理得
∴
∵
∴(舍去)
综上可知,是“和谐三角形”时.
(3)①∵在等边三角形中,
∴,.
又∵是的高,是“和谐三角形”,
∴.
∴.
∴.
又∵.
∴.
∴.
∴.
②
∵,
∴.
∴
∴.
由,知,
设,,则.
∴
,
∴,
∴,
∴线段,,能组成一个和谐三角形.
科目:初中数学 来源: 题型:
【题目】某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价元,乒乓球每盒定价元,经洽谈后,甲店每买一-副球拍赠一盒乒乓球,乙店全部按定价的折优惠.该班需买球拍副,乒乓球若干盒(不小于盒).
(1)当购买乒乓球多少盒时,在两店购买付款一样?
(2)如果给你元,让你选择- -家商店去办这件事,你打算去哪家商店购买?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(背景知识)
数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点、点表示的数分别为、,则、两点之间的距离,线段的中点表示的数为.
(问题情境)
如图,数轴上点表示的数为,点表示的数为8,点从点出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点从点出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为秒().
(综合运用)
(1)填空:
①、两点之间的距离________,线段的中点表示的数为__________.
②用含的代数式表示:秒后,点表示的数为____________;点表示的数为___________.
③当_________时,、两点相遇,相遇点所表示的数为__________.
(2)当为何值时,.
(3)若点为的中点,点为的中点,点在运动过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请求出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,长方形的三个顶点的坐标为,,,且轴,点是长方形内一点(不含边界).
(1)求,的取值范围.
(2)若将点向左移动8个单位,再向上移动2个单位到点,若点恰好与点关于轴对称,求,的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象
如图所示,根据图中提供的信息,有下列说法:
①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km;
③出发后1.5小时,甲的行程比乙多3km; ④甲比乙先到达终点.
其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.下图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设个上下车站点,如图所示:
某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站): ;
请通过计算说明站是哪一站?
若相邻两站之间的平均距离为千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm,点D是线段AB上一动点,将线段CD绕点C逆时针旋转50°至CD′,连接BD′.设AD为xcm,BD′为ycm.
小夏根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小夏的探究过程,请补充完整.
(1)通过取点、画图、测量,得到了与的几组值,如下表:
1 | 2 | 3 | 3.5 | 4 | 5 | 6 | ||
3.5 | 1.5 | 0.5 | 0.2 | 0.6 | 1.5 | 2.5 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BD=BD'时,线段AD的长度约为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com