【题目】(7分)某产品每件的成本10元,试销阶段每件产品的销售价(元)与产品的日销售量(件)之间的关系如下表:
/元 | 15 | 20 | 30 | … |
/件 | 25 | 20 | 10 | … |
且日销售量(件)是销售价(元)的一次函数.
(1)求出日销售量(件)与销售价(元)的函数关系式;
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时最大销售利润是多少?
【答案】(1) ;(2),所以当定价为25元时,利润w最大为225元.
【解析】
试题分析:(1)根据日销售量(件)是销售价(元)的一次函数,设y=kx+b,代入两组y与x的实数对即可求得k和b的值;
(2)销售利润=一件利润×销售件数,一件利润=销售价-成本,日销售量y是销售价x的一次函数,所获利润W为二次函数,运用二次函数的性质,可求最大利润.
试题解析:解:(1)设此一次函数关系式为y=kx+b,
则,解得:,
故一次函数的关系式为y=-x+40.
(2)设所获利润为W元,
则W=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225
所以产品的售价应定为25元,此时每日的最大销售利润为225元.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-4x+3.
(1)该函数与x轴的交点坐标 ;
(2)在平面直角坐标系中,用描点法画出该二次函数的图象;
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | -1 | 0 | 3 | … |
(3)根据图象回答:
①当自变量x的取值范围满足什么条件时,y<0?
②当0≤x<3时,y的取值范围是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(-1,0),点C(0,5),点D(1,8)都在抛物线上,已知M为抛物线的顶点.
(1)求抛物线的表达式;
(2)求△MCB的面积;
(3)根据图形直接写出使直线MC表示的一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】多项式x3-4x2y+4xy2因式分解的结果是( )
A. x3-4xy(x-y) B. x(x-2y)2
C. x(4xy-4y2-x2) D. x(x2-4xy+4y2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=MF;
(2)若AE=2,求FC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】PM2.5是大气中直径小于或等于0.0000025m的颗粒物,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量有较大的影响.在这里将数字0.0000025用科学计数法表示为( )
A. 0.25×10﹣5B. 0.25×10﹣6C. 2.5×10﹣5D. 2.5×10﹣6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面给出四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD为平行四边形的是( )
A. 1∶2∶3∶4 B. 2∶3∶2∶3
C. 2∶2∶3∶3 D. 1∶2∶2∶3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com