【题目】如图1,,,.
(1)求的度数的大小;
(2)如图2,若连接,请判断直线与直线的位置关系,并说明理由;
(3)如图2,根据(2)问的条件,连接与直线交于点,若,求的面积.
【答案】(1)的度数为45°;(2),见解析;(3).
【解析】
(1)连接AB,过D作DT∥AE,则DT∥BF,由直角三角形的性质得出∠CAB+∠CBA=90°,由平行线的性质得出∠BAE+∠ABF=180°,得出∠CAE+∠CBF=90°,由角平分线得出∠CAD=∠EAD,∠CBD=∠FBD,证出∠EAD+∠FBD=45°,由平行线的性质得出∠TDA=∠EAD,∠TDB=∠FBD,得出∠TDA+∠TDB=45°即可;
(2)证明△ACD≌△BCD得出∠CDA=∠CDB,证出∠DAC=67.5°-45°=22.5°,进一步得出∠CDA=∠EAD,即可得出结论;
(3)证明△AGC是等腰直角三角形,得出CG=AG=3,由三角形面积公式即可得出结果.
(1)连接AB,过D作DT∥AE,则DT∥BF,如图1所示:
∵∠ACB=90°,
∴∠CAB+∠CBA=90°,
∵AE∥BF,
∴∠BAE+∠ABF=180°,
∴∠CAE+∠CBF=90°,
∵∠AD、BD分别是∠EAC、∠FBC的角平分线,
∴∠CAD=∠EAD,∠CBD=∠FBD,
∵∠CAD+∠EAD+∠CBD+∠FBD=90°,
∴∠EAD+∠FBD=45°,
∵DT∥AE,
∴∠TDA=∠EAD,
∵DT∥BF,
∴∠TDB=∠FBD,
∴∠TDA+∠TDB=45°,
∴∠ADB=45°;
(2)CD∥AE;理由如下:
∵AC=BC,
∴∠CAB=∠CBA,
∵AD=BD,
∴∠DAB=∠DBA,
∴∠DAC=∠DBC,
在△ACD和△BCD中,
,
∴△ACD≌△BCD(SAS),
∴∠CDA=∠CDB,
∵∠ADB=45°,
∴∠CDA=22.5°,∠BAD=67.5°,
∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∴∠DAC=67.5°-45°=22.5°,
∵AD平分∠EAC,
∴∠EAD=∠DAC=22.5°,
∴∠CDA=∠EAD,
∴CD∥AE;
(3)∵∠CDA=∠CDB,AD=BD,
∴DG⊥AB,AG=BG=AB=3,
∵∠CAB=45°,
∴△AGC是等腰直角三角形,
∴CG=AG=3,
∴S△ABC=ABCG=×6×3=9.
科目:初中数学 来源: 题型:
【题目】一个数值转换器,如图所示:
(1)当输入的x为16时.输出的y值是 ;
(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;
(3)若输出的y是,请写出两个满足要求的x值: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】因式分解:
(1)
(2);
(3)(x+y)2-16(x-y)2
(4)-2x2y+12xy-18y
(5)x4-1
(6)
(7)已知,,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)画出与△ABC 关于 y 轴对称的图形△A1B1C1;
(2)写出△A1B1C1 各顶点坐标;
(3)求△ABC 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AC,BD为对角线,AB=BC=AC=BD,则∠ADC的大小为( )
A. 120°B. 135°C. 145°D. 150°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.
(1)若BC在DE的同侧(如图①)且AD=CE,求证:BA⊥AC.
(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.
(1)线段OA1的长是 ,∠AOB1的度数是 ;
(2)连接AA1,求证:四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com