【题目】如图,A(6,0),B(0,4),点B关于x轴的对称点为C点,点D在x轴的负半轴上,△ABD的面积是30.
(1)求点D坐标;
(2)若动点P从点B出发,沿射线BC运动,速度为每秒1个单位,设P的运动时间为t秒,△APC的面积为S,求S与t的关系式;
(3)在(2)的条件下,同时点Q从D点出发沿x轴正方向以每秒2个单位速度匀速运动,若点R在过A点且平行于y轴的直线上,当△PQR为以PQ为直角边的等腰直角三角形时,求满足条件的t值.
【答案】(1)点D坐标为(﹣9,0);(2)当0<t≤8时,S=﹣3t+24,当t>8时,S=3t﹣24.(3)当△PQR为以PQ为直角边的等腰直角三角形时,t=6秒或秒或10秒或11秒.
【解析】
(1)根据三角形面积公式求出AD即可.
(2)分两种情形①当0<t≤8时,②当t>8时,求出△PAC面积即可.
(3)分三种情形①如图1中,当∠QPR=90°,PQ=PR时,作RH⊥OP于H,②如图2中,当∠PQR=90°,QR=PQ时,③如图3中,当∠PQR=90°,QR=PQ时利用全等三角形的性质列出方程即可解决.
(1)∵A(6,0),B(0,4),△ABD的面积是30,
∴,
∴ ,
∴AD=15,
∴OD=9,
∴点D坐标为(﹣9,0);
(2)∵点B(0,4)关于x轴的对称点为C点,
∴点C坐标(0﹣4),
∴当0<t≤8时,S=×(8﹣t)×6=﹣3t+24,
当t>8时,S= ×(t﹣8)×6=3t﹣24.
(3)①如图1中,当∠QPR=90°,PQ=PR时,作RH⊥OP于H,
∵∠QPO+∠RPH=90°,∠QPO+∠PQO=90°,
∴∠PQO=∠RPH,
在△PQO和△RPH中, ,
∴△PQO≌△RPH(AAS),
∴RH=PO,
∵四边形AOHR是矩形,
∴RH=AO=6,
∴OP=6,
∴t﹣4=6,
∴t=10;
②如图2中,当∠PQR=90°,QR=PQ时,
∵∠RQA+∠OQP=90°,∠OQP+∠OPQ=90°,
∴∠RQA=∠OPQ,
在△ARQ和△OQP中,,
∴△ARQ≌△OQP,
∴OP=AQ,
∴t﹣4=2t﹣15,
∴t=11;
③如图3中,当∠PQR=90°,QR=PQ时,
∵∠RQA+∠OQP=90°,∠OQP+∠OPQ=90°,
∴∠RQA=∠OPQ,
在△ARQ和△OQP中,,
∴△ARQ≌△OQP,
∴OP=AQ,
∴t﹣4=15﹣2t,
∴,
当Q为OA的中点,即2t﹣9=3时,
∴t=6;
综上所述,当△PQR为以PQ为直角边的等腰直角三角形时,t=6秒或秒或10秒或11秒.
科目:初中数学 来源: 题型:
【题目】(阅读材料)
我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.
在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.
(理解应用)
(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;
(拓展应用)
(2)利用(1)中的等式计算:
①已知a2+b2=10,a+b=6,求ab的值;
②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小慧家与文具店相距720米,小慧从家出发,匀速步行12分钟来到文具店,买文具用时4分钟,因家中有事,沿原路匀速跑步返回家中,用时6分钟.
(1)小慧返回家中的速度比去文具店的速度快 米/分钟;
(2)请你画出这个过程中,小慧离家的距离与时间的函数图象;
(3)求小慧从家出发后经过多少分钟与她家距离为480米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).
(1)求此抛物线的表达式;
(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.
⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;
⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;
⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四 边形OABC是矩形,点A、C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90°得到的,点D在X轴上,直线BD交Y轴于点F,交OE于点H,线段BC、OC的长是方程x2-6x+8=0的两个根,且OC>BC.
(1)求直线BD的解析式.
(2)求 △OFH的面积.
(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,为坐标原点,、两点的坐标分别为、,且,点从出发,以每秒1个单位的速度沿射线匀速运动,设点运动时间为秒.
(1) , .
(2)连接,若的面积为3,求的值.
(3)过作直线的垂线,垂足为,直线与轴交于点,在点运动的过程中,是否存在这样点,使,若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是( )
A. a>0
B. 不等式ax2+bx+c>0的解集是﹣1<x<5
C. a﹣b+c>0
D. 当x>2时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,点O是斜边AB的中点,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点O顺时针旋转一个角度α(0°<α<90°),记三角板的两直角边与Rt△ABC的两腰AC、BC的交点分别为E、D,四边形CEOD是旋转过程中三角板与△ABC的重叠部分(如图①所示).那么,在上述旋转过程中:
(1)线段CE与BD具有怎样的数量关系?四边形CEOD的面积是否发生变化?证明你发现的结论;
(2)当三角尺旋转角度为____________时,四边形CEOD是矩形;
(3)若三角尺继续旋转,当旋转角度α(90°<α<180°)时,三角尺的两边与等腰Rt△ABC的腰CB和AC的延长线分别交于点D、E(如图②所示). 那么线段CE与BD的数量关系还成立吗?若成立,给予证明;若不成立,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com