【题目】如图,已知的顶点A和AB边的中点C都在双曲线的一个分支上,点B在x轴上,则的面积为
A.3B.4C.6D.8
【答案】C
【解析】
,结合图形可得:S△ABO=S△AOM+S△AMB,分别求解出S△AOM、S△AMB的值,过点A、C分别作AM⊥OB于M、CD⊥OB于D,设点A坐标为(x,y),设B的坐标为(a,0),已知点C是线段AB的中点, 由点A位于反比例函数的图象上可得:xy=4,即S△AOM=2,接下来,根据点C的坐标为( ),同理可解得S△CDO的面积,接下来,由S△AMB=×AM×BM,MB=|ax|,AM=y,可解得S△AMB,即可确定△ABO的面积.
解:过点A、C分别作AM⊥OB于M、CD⊥OB于D,设点A坐标为(x,y)
∵ 顶点A在双曲线y=(x>0)图象上
∴ xy=4
∵ AM⊥OB
∴ S△AMO=×AM×OM=×xy,S△AMB=×AM×BM (三角形的面积等于一边与此边上高的乘积的一半)
∵ S△AMO=×xy, xy=4
∴ S△AMO=2
设B的坐标为(a,0)
∵ 点C是线段AB的中点 点A、B坐标为(x,y)、(a,0)
∴ 点C坐标为()
∵ CD⊥OB 点C坐标为()
∴ S△CDO=×CD×OD=×()×()=2 (三角形的面积等于一边与此边上高的乘积的一半)
故ay=2
∵ S△AMB=×AM×BM,MB=|ax| ,AM=y
∴ S△AMB=span>×|ax|×y=4
∵ S△ABO=S△AOM+S△AMB,S△AOM=2,S△AMB=4
∴ S△ABO=6
即△ABO的面积是6,答案选C.
科目:初中数学 来源: 题型:
【题目】如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;
…
如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是一个正方体的表面展开图,请回答下列问题:
(1)与面B、面C相对的面分别是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相对两个面所表示的代数式的和都相等,求E、F代表的代数式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,观察由棱长为 的小立方体摆成的图形,寻找规律:如图 ① 中,共有 个小立方体,其中 个看得见, 个看不见;如图 ② 中,共有 个小立方体,其中 个看得见, 个看不见;如图 ③ 中,共有 个小立方体,其中 个看得见, 个看不见; ,则第 ⑥个图中,看得见的小立方体有________________个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读材料)
因式分解:.
解:将“”看成整体,令,则原式.
再将“”还原,原式.
上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.
(问题解决)
(1)因式分解:;
(2)因式分解:;
(3)证明:若为正整数,则代数式的值一定是某个整数的平方.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com