精英家教网 > 初中数学 > 题目详情
1.分解因式
(1)x2(a-b)-y2(a-b)
(2)9(a+b)2-4(a-b)2

分析 (1)先提公因式a-b,再套用平方差公式分解;
(2)先用平方差公式分解,再化简即可.

解答 解:(1)原式=(a-b)(x2-y2
=(a-b)(x+y)(x-y);
(2)原式=[3(a+b)+2(a-b)][3(a+b)-2(a-b)]
=(5a+b)(a+5b).

点评 本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,分解要彻底.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.解方程$\frac{x-1}{x}$-$\frac{2x}{x-1}$=3时,设$\frac{x-1}{x}$=y,则原方程可化为关于y的整式方程是(  )
A.y-$\frac{2}{y}$=3B.y2-2y=3C.y2-3y-2=0D.y2+3y-2=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.因式分解:
(1)x(a-b)2+y(b-a)2
(2)4x2-9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.
(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;
(2)求出a的值;
(3)求张师傅途中加油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小东从甲地出发匀速前往相距20km的乙地,一段时间后,小明从乙地出发沿同一条路匀速前往甲地.小东出发2.5h后,在距乙地7.5km处与小明相遇,之后两人同时到达终点.图中线段AB、CD分别表示小东、小明与乙地的距离y(km)与小东所用时间x(h)的关系.
(1)求线段AB、CD所表示的y与x之间的函数表达式;
(2)小东出发多长时间后,两人相距16km?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.因式分解:
(1)a5-a3
(2)4-4(x-y)+(x-y)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.学校两幢教学楼之间有一块三角形地带,将其划分为三个区域:一块菱形和两块三角形.菱形作为花坛,两个三角形内铺上草皮,两幢教学楼的夹角为120°,其余尺寸如图所示,则菱形花坛的面积为$\frac{7200\sqrt{3}}{19}$m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.分解因式:
(1)2x2-18  (2)-3m+6m2-3m3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧 的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?
大数学家海伦曾用轴对称的方法巧妙的解决了这问题

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.
(1)理由:如图③,在直线L上任取一点C′,连结AC′,BC′,B′C′.
∵直线L是点B,B′的对称轴,点C,C′在L上.
∴CB=CB',C′B=C'B'
∴AC+CB=AC+CB′=AB'.
在△AC′B′中,∵AB′<AC′+C′B′.
∴AC+CB<AC′+C′B′.
∴AC+CB<AC′+C′B′即AC+CB最小
归纳小结:
本问题实际是利用轴对称变换的思想,把A,B在直线的同侧问题转化为在直线的两侧,从而可利用“两 点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).
本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.
(2)模型应用
如图④,正方形 ABCD 的边长为2,E为AB的中点,F是AC上一动点.
求EF+FB的最小值
分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是$\sqrt{5}$.

如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是$\widehat{AD}$的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是2$\sqrt{2}$.
如图⑥,一次函数y=-2x+4的图象与x、y轴分别交于点A,B两点,点O为坐标原点,点C与点D分别为线段OA、AB的中点,点P为OB上一动点.求PC+PD取得最小值时P点坐标.

查看答案和解析>>

同步练习册答案