如图,在△ABE和△ACD中,给出以下四个论断:
【小题1】AB=AC
【小题2】AD=AE;
【小题3】AM=AN;
【小题1】已知:如图,在△ABE和△ACD中,AD=AE;AM=AN;AD⊥DC,AE⊥BE.
求证:AB=AC.
证明:∵AD⊥DC,AE⊥BE,
∴∠D=∠E=90°.
在Rt△ADM和Rt△AEN中,
AD=AE, AM=AN ,
∴△ADM≌△AEN(HL).
∴∠DAM=∠EAN.
∴∠DAC=∠EAB.
在△DAC与△EAB中,
∠DAC=∠EAB, AD="AE" ,∠D=∠E ∴△DAC≌△EAB(ASA).
∴AB=AC.
【小题2】已知:如图,在△ABE和△ACD中,AB=AC,AD=AE,AD⊥DC,AE⊥BE.求证:AM=AN.
证明:AD⊥DC,AE⊥BE,
∴∠D=∠E=90°.
在Rt△ACD和Rt△ABE中,
AC="AB" AD=AE ,
∴Rt△ACD≌Rt△ABE(HL),
∴∠CAD=∠BAE,
∴∠DAM=∠EAN.
在△ADM和△AEN中,
∠D=∠E, AD=AE, ∠DAM=∠EAN ,
∴△ADM≌△AEN(ASA),
∴AM=AN.
【小题3】已知:如图,在△ABE和△ACD中,AB=AC,AM=AN,AD⊥DC,AE⊥BE.
求证:AD=AE.
证明:在△AMC和△ANB中,
AM=AN, ∠MAC=∠NAB, AC=AB ,
∴△AMC≌△ANB(SAS),
∴∠C=∠B,
在△ACD和△ABE中,
∠D=∠E ,∠C=∠B, AC=AB ,
∴△ACD≌△ABE(AAS),
∴AD=AE.解析:
本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件证明全等.利用全等三角形对应角,对应边相等解题.