精英家教网 > 初中数学 > 题目详情
阅读下列材料:
试判断a2-3a+7与-3a+2的大小.
分析:要判断两个数的大小,我们往往用作差法,即若a-b>0,则a>b;若a-b<0,则a<b;若a-b=0,则a=b.
解:∵(a2-3a+7)-(-3a+2)=a2-3a+7+3a-2
=a2+5,
又∵a2>0,∴a2+5>0.
∴a2-3a+7>-3a+2.
阅读后,应用这种方法比较
a2-b2+2
2
a2-2b2+1
3
的大小.
分析:由阅读材料可以知道,判断两个数的大小,我们往往用作差法,把两个算式相减,进一步化简分析解答即可.
解答:解:∵
a2-b2+2
2
-
a2-2b2+1
3

=
1
2
a2-
1
2
b2+1-
1
3
a2+
2
3
b2-
1
3

=
1
6
(a2+b2)+
2
3

又∵a2+b2>0
1
6
(a2+b2)+
2
3
>0
a2-b2+2
2
a2-2b2+1
3
的.
点评:此题考查利用作差法来比较两个数的大小,注意利用非负数的性质解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读下列材料:
如图1,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2外公切线,A、B为切点,
求证:AC⊥BC
证明:过点C作⊙O1和⊙O2的内公切线交AB于D,
∵DA、DC是⊙O1的切线
∴DA=DC.精英家教网
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根据上述材料,解答下列问题:
(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;
(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图2),已知A、B两点的坐标为(-4,0),(1,0),求经过A、B、C三点的抛物线y=ax2+bx+c的函数解析式;
(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
题目:已知实数a,x满足a>2且x>2,试判断ax与a+x的大小关系,并加以说明.
思路:可用“求差法”比较两个数的大小,先列出ax与a+x的差y=ax-(a+x),再说明y的符号即可.
现给出如下利用函数解决问题的方法:
简解:可将y的代数式整理成y=(a-1)x-a,要判断y的符号可借助函数y=(a-1)x-a的图象和性质解决.
参考以上解题思路解决以下问题:
已知a,b,c都是非负数,a<5,且 a2-a-2b-2c=0,a+2b-2c+3=0.
(1)分别用含a的代数式表示4b,4c;
(2)说明a,b,c之间的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

综合题
阅读下列材料:
配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程x2-4x+4=0,则(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.则有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0则有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根据以上材料解答下列各题:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三边,且a2+b2+c2-ac-ab-bc=0,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年广西桂林市中考数学试卷(解析版) 题型:解答题

(2004•呼和浩特)阅读下列材料:
如图1,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2外公切线,A、B为切点,
求证:AC⊥BC
证明:过点C作⊙O1和⊙O2的内公切线交AB于D,
∵DA、DC是⊙O1的切线
∴DA=DC.
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根据上述材料,解答下列问题:
(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;
(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图2),已知A、B两点的坐标为(-4,0),(1,0),求经过A、B、C三点的抛物线y=ax2+bx+c的函数解析式;
(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.

查看答案和解析>>

同步练习册答案