精英家教网 > 初中数学 > 题目详情

已知,如图,一条抛物线的对称轴是直线x=数学公式,经过点(1,-3)、(3,-2),与x轴交于A、B两点,与y轴交于点C.D、E分别是边AC、BC上的两个动点(不与A、B重合),且保持DE∥AB.以DE为边向上作正方形DEFG.
(1)求二次函数的解析式.
(2)试判断△ABC的形状,并说明理由.
(3)当正方形的边GF在AB边上时,求正方形DEFG的边长.
(4)当D、E在运动过程中,正方形DEFG的边长能否与△ABC的外接圆相切?若相切,求出DE的长;若不能,则说明理由.

解:(1)设二次函数解析式为y=a(x-2+k,
经过(1,-3),(3,-2),得
a=,k=-
∴二次函数解析式为y=(x-2-

(2)解得A(-1,0),B(4,0),C(0,-2),
∵∠AOC=∠BOC=90°,
==
∴△AOC∽△COB,
∴∠ACO=∠ABC,
∴∠ACO+∠BCO=∠ABC+∠BCO=90°,
∴△ABC是直角三角形;(另外解法也给分)

(3)当GF在AB上时,DE交OC于M.设正方形的边长为x.
∵DE∥AB,
∴△CDE∽△CAB,
==
∴x=
答:正方形的边长为

(4)能相切.
设△ABC外接圆圆心为N,切点为H.DE为y,△ABC的外接圆半径为2.5,
∴OM=y-2.5,CM=2-(y-2.5)=4.5-y,
==
∴y=
答:正方形DEFG的边长能与△ABC的外接圆相切,DE为
分析:(1)根据抛物线的对称轴设出二次函数的顶点式,再根据此抛物线经过点(1,-3)、(3,-2)即可得出此函数的解析式;
(2)由(1)中函数的解析式可得出A、B、C三点的坐标,可得出△AOC∽△COB,再根据相似三角形的性质即可得出结论;
(3)设△ABC外接圆圆心为N,切点为H.DE为y,△ABC的外接圆半径为2.5,再根据=即可得出结论.
点评:本题考查的是二次函数综合题,涉及到正方形的性质、三角形的外接圆与外心、相似三角形的判定与性质,涉及面较广,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

汉口江滩有一个大型的圆形底面的喷水池,水池正中央装有一根高数学公式米的水管,水管顶端装有一个喷水头,已知喷出的抛物线形水柱在与池中心的水平距离为3米处达到最高高度为数学公式米,
(1)请建立适当的平面直角坐标系,使水管顶端的坐标为(0,数学公式),水柱的最高点的坐标为(3,数学公式),求此坐标系中抛物线对应的函数关系式(不要求写出自变量的取值范围).
(2)如图,在水池底面上有一些同心圆轨道,每条轨道上安装了喷水龙头,相邻轨道之间的宽度为l米,最内轨道的半径为r米,其上每1.2米的弧长上装有一个喷水龙头,其他轨道上的喷水龙头个数与最内轨道上的个数相同.(1)中水柱落地处刚好在最外轨道上,求当r为多少时,水池中安装的喷水龙头的个数最多?

查看答案和解析>>

同步练习册答案