解:(1)在y=-
x+2
中,令x=0,得y=2
;
令y=0,得x=2,
∴C(0,2
),B(2,0),
∴OC=2
,OB=2.
tan∠ABC=
=
=
,
∴∠ABC=60°.
(2)如答图1所示,连接AC.
由(1)知∠ABC=60°,∴BC=2OB=4.
又∵AB=4,∴AB=BC,
∴△ABC为等边三角形,AB=BC=AC=4.
取AC中点Q,以点Q为圆心,2为半径长画圆,与直线BC交于点P
1,P
2.
∵QP
1=2,QO=2,∴点P
1与点C重合,且⊙Q经过点O.
∴P
1(0,2
).
∵QA=QO,∠CAB=60°,∴△AOQ为等边三角形.
∴在⊙Q中,AO所对的圆心角∠OQA=60°,
由圆周角定理可知,AO所对的圆周角∠APO=30°,故点P
1、P
2符合条件.
∵QC=QP
2,∠ACB=60°,∴△P
2QC为等边三角形.∴P
2C=QP=2,∴点P
2为BC的中点.
∵B(2,0),C(0,2
),∴P
2(1,
).
综上所述,符合条件的点P坐标为(0,2
),(1,
).
(3)当BC在不同位置时,点P的个数会发生改变,使∠APO=30°的点P的个数情况有四种:1个、2个、3个、4个.
如答图2所示,
以AO为弦,AO所对的圆心角等于60°的圆共有2个,记为⊙Q,⊙Q′,点Q,Q′关于x轴对称.
∵直线BC与⊙Q,⊙Q′的公共点P都满足∠APO=
∠AQO=
∠AQ′O=30°,
∴点P的个数情况如下:
①有1个:直线BC与⊙Q(或⊙Q′)相切;
②有2个:直线BC与⊙Q(或⊙Q′)相交;
③有3个:直线BC与⊙Q(或⊙Q′)相切,同时与⊙Q(或⊙Q′)相交;直线BC过⊙Q与⊙Q′的一个交点,同时与两圆都相交;
④有4个:直线BC同时与两圆都相交,且不过两圆的交点.
分析:(1)求得B、C的坐标,在直角△BOC中,利用三角函数即可求解;
(2)取AC中点Q,以点Q为圆心,2为半径长画圆⊙Q,⊙Q与直线BC的两个交点,即为所求;
(3)当BC在不同位置时,点P的个数会发生改变,使∠APO=30°的点P的个数情况有四种:1个、2个、3个、4个.如答图2所示.
点评:本题是代数几何综合题,考查了坐标平面内直线与圆的位置关系.难点在于第(3)问,所涉及的情形较多,容易遗漏.