精英家教网 > 初中数学 > 题目详情

【题目】为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:

污水处理设备

A型

B型

价格(万元/台)

m

m﹣3

月处理污水量(吨/台)

220

180


(1)求m的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.

【答案】
(1)解:由90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,

即可得:

解得m=18,

经检验m=18是原方程的解,即m=18


(2)解:设买A型污水处理设备x台,则B型(10﹣x)台,

根据题意得:18x+15(10﹣x)≤165,

解得x≤5,由于x是整数,则有6种方案,

当x=0时,10﹣x=10,月处理污水量为1800吨,

当x=1时,10﹣x=9,月处理污水量为220+180×9=1840吨,

当x=2时,10﹣x=8,月处理污水量为220×2+180×8=1880吨,

当x=3时,10﹣x=7,月处理污水量为220×3+180×7=1920吨,

当x=4时,10﹣x=6,月处理污水量为220×4+180×6=1960吨,

当x=5时,10﹣x=5,月处理污水量为220×5+180×5=2000吨,

答:有6种购买方案,每月最多处理污水量的吨数为2000吨


【解析】(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出m的分式方程,求出m的值即可;(2)设买A型污水处理设备x台,B型则(10﹣x)台,根据题意列出x的一元一次不等式,求出x的取值范围,进而得出方案的个数,并求出最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:
(1)一月份B款运动鞋的销售量是A款的 ,则一月份B款运动鞋销售了多少双?
(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);
(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是 ,求从袋中取出黑球的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.
(1)A比B后出发几个小时?B的速度是多少?
(2)在B出发后几小时,两人相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于(
A.
B.
C.4
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:
方案一:直接锯一个半径最大的圆;
方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;
方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;
方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.

(1)写出方案一中圆的半径;
(2)通过计算说明方案二和方案三中,哪个圆的半径较大?
(3)在方案四中,设CE=x(0<x<1),圆的半径为y.
①求y关于x的函数解析式;
②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么 的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.

(1)求证:四边形ABFE是平行四边形.
(2)△ABD沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,
①当t为何值时,ABFE是菱形?请说明你的理由.
ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.

查看答案和解析>>

同步练习册答案