精英家教网 > 初中数学 > 题目详情
精英家教网如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,
求证:KL∥AE且KL=
14
AE.
分析:通过连线,将多边形分割成三角形、四边形,为多个中点的利用创造条件,这是解本例的突破口.关键是做题中三角形中位线定理的运用.
解答:精英家教网证明:连接BE,取其中点R,连接MR,RN,PR,PN,NQ,RQ.
∵点M是AB的中点,R是BE的中点,
∴MR∥AE,MR=
1
2
AE,
∵R,N、P、Q分别为BE、CD、BC、DE的中点,
连接CE,
∴PR∥CE,PR=
1
2
CE,NQ∥CE,NQ=
1
2
CE,
∴PR∥NQ,PR=NQ,
∴四边形PNQR是平行四边形,
∴RN与PQ互相平分,
∵点L是PQ的中点,
∴点L是RN的中点,
∵点K是MN的中点,
∴KL∥MR,KL=
1
2
MR,
∴KL∥AE,KL=
1
4
AE.
点评:此题主要考查平行四边形的判定与性质及三角形中位线定理的综合运用.注需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2012•青岛模拟)同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,
求证:KL∥AE且KL=数学公式AE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,
求证:KLAE且KL=
1
4
AE.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2001年全国初中数学竞赛(天津赛区)初赛试卷(解析版) 题型:解答题

如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,
求证:KL∥AE且KL=AE.

查看答案和解析>>

同步练习册答案