精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知两点坐标P1(x1,y1)P2(x2,y2)我们就可以使用两点间距离公式P1P2=
(x1-x2)2+(y1-y 2)2
来求出点P1与点P2间的距离.如:已知P1(-1,2),P2(0,3),则P1P2=
(-1-0)2+(2-3)2
=
2

通过阅读材以上材料,请回答下列问题:
(1)已知点P1坐标为(-1,3),点P2坐标为(2,1)
①求P1P2=
13
13

②若点Q在x轴上,则△QP1P2的周长最小值为
6+
13
6+
13

(2)如图,在平面直角坐标系中,四边形OABC为长方形,点A、B的坐标分别为
(4,0)(4,3),动点M、N分别从点O,点B同时出发,以每秒1个单位的速度运动,其中M点沿OA向终点A运动,N点沿BC向终点C运动,过点N作NF⊥BC交AC于F,交AO于G,连结MF.
当两点运动了t秒时:
①直接写出直线AC的解析式:
y=-
3
4
x+3
y=-
3
4
x+3

②F点的坐标为(
4-t
4-t
3
4
t
3
4
t
);(用含t的代数式表示)
③记△MFA的面积为S,求S与t的函数关系式;(0<t<4);
④当点N运动到终点C点时,在y轴上是否存在点E,使△EAN为等腰三角形?若存在,请直接写出点E的坐标,若不存在,请说明理由.
分析:(1)①利用两点之间的距离公式即可直接求解;
②利用两点之间的距离公式求得OA1和OA2的长度,结合①即可求得三角形的周长;
(2)①利用矩形的性质易求点C的坐标.利用待定系数法可以求得直线AC的方程;
②由平行线分线段成比例得到
FG
OC
=
AG
OA
来求GF的长度,从而易求点F的坐标;
③由三角形的面积公式得到S=
1
2
AM•FG;
④需要分类讨论:AN=AE,NE=AN和AE=NE三种情况.
解答:解:(1)①P1P2=
(2+1)2+(1-3)2
=
13


②P1坐标关于x轴的对称点是
P
1
(-1,-3),设直线
P
1
P2的解析式是y=kx+b(k≠0),
根据题意得:
-k+b=-3
2k+b=1

解得:
k=-
4
3
b=
11
3

则直线的解析式是:y=-
4
3
x+
11
3

在解析式中令y=0,解得:x=
11
4

则Q的坐标是:(
11
4
,0),
则QP1+QP2=
P
1
P2=
(2+1)2+(1+4)2
=
9+25
=6,
则△QP1P2的周长最小值是:6+
13

故填:6+
13


(2)①如图,四边形ABCO是矩形,点A、B的坐标分别为(4,0)、(4,3),则C(0,3).
设直线AC的解析式为:y=kx+b(k≠0),则
4k+b=0
b=3

解得,
k=-
3
4
b=3

所以直线AC的解析式为:y=-
3
4
x+3;
故填:y=-
3
4
x+3;

②∵NF⊥BC,四边形ABCO是矩形,
∴NG∥OC,BN=AG,
FG
OC
=
AG
OA
,即
FG
3
=
t
4

∴FG=
3
4
t,
∴F(4-t,
3
4
t);

③如图,S=
1
2
AM•FG=
1
2
(4-t)×
3
4
t=-
3
8
t2+
3
2
t(0<t<4);

④∵A(4,0),C(0,3),点N与点C重合,
∴ON=3,OA=4,
∴由勾股定理得到AN=5.
如图,当AN=AE时,易求ON=OE=3,则E1(0,-3);
当NE=AN时,OE=5-3=2,则E2(0,-2);
当AE=NE时,设E3(0,t),则(t-3)2=42+t2
解得,t=
7
6

∴E3(0,
7
6
);
综上所述,符合条件的点E的坐标分别是:E1(0,-3),E2(0,-2),E3(0,
7
6
).
点评:本题考查了一次函数综合题.其中涉及到了待定系数法求一次函数解析式,三角形的面积计算,矩形的性质以及等腰三角形的判定与性质.解(3)④题时,要分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案