精英家教网 > 初中数学 > 题目详情
已知在等腰△ABC中,AD⊥BC于点D,且AD=
12
BC,求△ABC底角的度数.
分析:作出图形,分①点A是顶点时,根据等腰三角形三线合一的性质可得BD=CD,从而得到AD=BD=CD,再利用等边对等角的性质可得∠B=∠BAD,然后利用直角三角形两锐角互余求解即可;
②点A是底角顶点时,再分AD在△ABC外部时,根据直角三角形30°角所对的直角边等于斜边的一半求出∠ACD=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求解即可得到底角是15°,AD在△ABC内部时,根据直角三角形30°角所对的直角边等于斜边的一半求出∠C=30°,然后再根据等腰三角形两底角相等求解即可.
解答:解:①如图1,点A是顶点时,∵AB=AC,AD⊥BC,
∴BD=CD,
∵AD=
1
2
BC,
∴AD=BD=CD,
在Rt△ABD中,∠B=∠BAD=
1
2
(180°-90°)=45°;
②如图2,点A是底角顶点,且AD在△ABC外部时,
∵AD=
1
2
BC,AC=BC,
∴AD=
1
2
AC,
∴∠ACD=30°,
∴∠BAC=∠ABC=
1
2
×30°=15°;
③如图3,点A是底角顶点,且AD在△ABC内部时,
∵AD=
1
2
BC,AC=BC,
∴AD=
1
2
AC,
∴∠C=30°,
∴∠BAC=∠ABC=
1
2
(180°-30°)=75°;
综上所述,△ABC底角的度数为45°或15°或75°.
点评:本题考查了30°角所对的直角边等于斜边的一半的性质,等腰三角形的两底角相等的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,已知在等腰△ABC中,AB=AC,P、Q分别是边AC、AB上的点,且AP=PQ=QB=BC.则∠PCQ=
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.
(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);
(2)求证:BC是过A,D,C三点的圆的切线;
(3)若过A,D,C三点的圆的半径为
3
,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO相似?若存在,求出DP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在等腰△ABC中,∠A=70°,AB=AC,则∠B为(  )
A、70°B、45°C、55°D、65°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在等腰△ABC中,∠ACB=120°.
(1)以边AB上一点O为圆心作⊙O,使⊙O过A、C两点;(只要求作出图形,保留痕迹,不要求写作法)
(2)判断BC与⊙O的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案