精英家教网 > 初中数学 > 题目详情
如图,AB是半径为10的⊙O的弦,OC⊥AB,垂足为点D,交⊙O于点C,且CD=2.求弦AB的长.
分析:连接OA,求出OD,根据勾股定理求出AD,根据垂径定理得出AB=2AD,代入求出即可,
解答:解:
连接OA,
∵OA=OC=10,CD=2,
∴OD=10-2=8,
在Rt△OAD中,有勾股定理得:AD=
102-82
=6,
∵OC⊥AB,OC过O,
∴AB=2AD=12.
点评:本题考查了勾股定理和垂径定理的应用,关键是求出AB=2AD和求出AD长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,
AB
是半径为1的半圆弧,△AOC为等边三角形,D是
BC
上的一动点,则△COD的面积S的最大值是(  )
A、s=
3
4
B、s=
3
3
C、s=
3
2
D、s=
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,
AB
是半径为1的半圆弧,△AOC为等边三角形,D是
BC
上的一动点,则三角形AOD的面积s的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是半径为R的圆O的直径,四边形CDMN和DEFG都是正方形.其中C,D,E在AB上,F,N在半圆上.求证:两个正方形的面积之和为一定值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,AB是半径为R的圆O的直径,四边形CDMN和DEFG都是正方形.其中C,D,E在AB上,F,N在半圆上.求证:两个正方形的面积之和为一定值.

查看答案和解析>>

同步练习册答案