精英家教网 > 初中数学 > 题目详情
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+2.6.已知球网与O点的水平距离为9m,高度为2.43m.
(1)求y与x的关系式;(不要求写出自变量x的取值范围)
(2)球能否越过球网?球会不会出界?请说明理由.
(1)把点A(0,2)代入关系式得:2=a(-6)2+2.6,
解得:a=-
1
60

则y与x的关系式为:y=-
1
60
(x-6)2+2.6;
(2)∵当x=9时,y=-
1
60
(9-6)2+2.6=2.45>2.43,
∴球能越过球网;
∵当x=18时,y=-
1
60
(18-6)2+2.6=0.2>0,
∴球会出界.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+2的图象与y轴相交于点A,与反比例函数y=
2
x
在第一象限的图象相交于D、E两点,已知点D、E分别在正方形ABCO的边AB、BC上.
(1)求点A、D、E的坐标;
(2)求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,-2),交x轴于A、B两点,其中A(-1,0),直线l:x=m(m>1)与x轴交于D.
(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=
2
3
x2
的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2011在y轴的正半轴上,点B1,B2,B3,…,B2011在二次函数y=
2
3
x2
位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2010B2011A2011都为等边三角形,则△A0B1A1的边长=______,△A2010B2011A2011的边长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,是抛物线形拱桥,当拱顶离水面2米时,水面宽4米.若水面下降1米,则水面宽度将增加多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,抛物线y=-
5
6
x2+
13
6
x+c与y轴交于点D,与x轴负半轴交于点B(-1,0),直线y=
1
2
x+b与抛物线交于A、B两点.作△ABD的外接圆⊙M交x轴正半轴于点C,连结CD交AB于点E.
(1)求b、c的值;
(2)求:①点A的坐标;②∠AEC的正切值;
(3)将△BOD绕平面内一点旋转90°,使得该三角形的对应顶点中的两个点落在已知抛物线上(如图2),请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,
9
2
).

(1)求抛物线的函数关系式;
(2)如图①,设该抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;
(3)如图②,连结AC、BC,若点E是线段AB上的一个动点(与点A、B不重合),过点E作EFAC交线段BC于点F,连结CE,记△CEF的面积为S,求出S的最大值及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

利客来超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设利客来超市销售该绿色食品每天获得利润p元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围.

查看答案和解析>>

同步练习册答案