【题目】完成下面的解题过程:
用公式法解下列方程:
(1)2x2﹣3x﹣2=0.
解:a=___,b=___,c=___.
b2﹣4ac=___=___>0.
=____=___,
x1=__,x2=___.
(2)x(2x﹣)=x﹣3.
解:整理,得___.
a=__,b=___,c=___.
b2﹣4ac=___=___.
=_____=____,
x1=x2=__.
(3)(x﹣2)2=x﹣3.
解:整理,得______.
a=___,b=___,c=___.
b2﹣4ac=___=___<0.
方程___实数根.
【答案】 2, -3, -2, 9+16, 25, , , 2, -, 2x﹣2x+3=0, 2, -2, 3, 24-24, 0, , , , x﹣5x+7=0, 1, -5, 7, 25-28, -3, 没有
【解析】(1)2x2﹣3x﹣2=0,因为a=2,b=-3,c=-2,
所以b2﹣4ac=9+16=25>0,
==,
x1=2,x2=.
(2)x(2x﹣)=x﹣3,
先将方程整理,得,因为a=2,b=,c=3,
所以b2﹣4ac=24-24=0,所以==,
所以x1=x2=.
(3)(x﹣2)2=x﹣3,
先将方程整理,得,
因为a=1,b=,c=7,
所以b2﹣4ac=25-28=-3<0,
所以方程没有实数根.
故答案为: (1). 2, (2). -3, (3). -2, (4). 9+16, (5). 25, (6). ,
(7). , (8). 2, (9). -, (10). 2x﹣2x+3=0, (11). 2, (12). -2,
(13). 3, (14). 24-24, (15). 0, (16). , (17). , (18). ,
(19). x﹣5x+7=0, (20). 1, (21). -5, (22). 7, (23). 25-28, (24). -3, (25). 没有.
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从今年4月起,居民生活用水按阶梯式计算水价,水价计算方式如下表所示,每吨水还需另加污水处理费0.80元.已知小张家今年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(友情提示:水费=水价+污水处理费)
用水量 | 水价(元/吨) |
不超过20吨 | m |
超过20吨且不超过30吨的部分 | n |
超过30吨的部分 | 2m |
(1)求m、n的值;
(2)随着夏天的到来,用水量将激增.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.
(1)求证:直线DE与⊙O相切;
(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题情境】
在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.
图① 图② 图③
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
【变式探究】
当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】
如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】
在直角坐标系中.直线l1:y=与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:
①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;
②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;
③作射线AG,交BC边于点D,则∠ADC的度数为________.
【答案】65°
【解析】由题意可知,所作的射线AG是∠BAC的角平分线.
∵在△ABC中,∠C=90°,∠ABC=40°,
∴∠BAC=180°-90°-40°=50°,
∴∠CAD=∠BAC=25°,
∴∠ADC=180°-90°-25°=65°.
【题型】填空题
【结束】
13
【题目】如图所示,已知线段AB,∠α,∠β,分别过A、B作∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求:
(1)此时轮船与小岛P的距离BP是多少海里;
(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行使,请问轮船有没有触焦的危险?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com