A. | x>2 | B. | x≥-2 | C. | x≥-2且x≠0 | D. | x≥-2且x≠-1 |
分析 结合二次根式有意义的条件:(1)二次根式的概念.形如a(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.a(a≥0)是一个非负数.求解即可.
解答 解:∵代数式有意义,
∴$\left\{\begin{array}{l}{x+2≥0}\\{x+1≠0}\end{array}\right.$,
∴x≥-2且x≠-1.
故选D.
点评 本题考查了二次根式有意义的条件,解答本题的关键在于熟练掌握二次根式有意义的条件:(1)二次根式的概念.形如a(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.a(a≥0)是一个非负数.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -3 | B. | -2 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3(x+1)2=2(x+1) | B. | $\frac{1}{{x}^{2}}$+$\frac{1}{x}$-2=0 | C. | ax2+bx+c=0 | D. | x2-2x=x2+1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x2$+\frac{1}{{x}^{2}}=0$ | B. | ax2+bx+c=0 | C. | (x-1)(x+2)=1 | D. | x(x-1)=x2+2x |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com