【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M、p及图中a的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间[20,25)内的概率.
【答案】
(1)解:由题可知 =0.25, =n, =p, =0.05.
又10+25+m+2=M,
解得M=40,n=0.625,m=3,p=0.075.
则[15,20)组的频率与组距之比a为0.125.
(2)解:参加社区服务的平均次数为:
次
(3)解:在样本中,处于[20,25)内的人数为3,可分别记为A,B,C,
处于[25,30]内的人数为2,可分别记为a,b.
从该5名学生中取出2人的取法有:
(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),
(A,B),(A,C),(B,C),(a,b),共10种,
至少1人在[20,25)内的情况有共9种,
∴至少1人参加社区服务次数在区间[20,25)内的概率为 .
【解析】(1)由频率= ,能求出表中M、p及图中a的值.(2)由频数与频率的统计表和频率分布直方图能求出参加社区服务的平均次数.(3)在样本中,处于[20,25)内的人数为3,可分别记为A,B,C,处于[25,30]内的人数为2,可分别记为a,b,由此利用列举法能求出至少1人参加社区服务次数在区间[20,25)内的概率.
【考点精析】掌握频率分布直方图是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An.
(1)若点A1的坐标为(2,1),则点A4的坐标为_____;
(2)若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知圆E:(x+ )2+y2=16,点F( ,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(Ⅰ)求动点Q的轨迹E的方程; (Ⅱ)直线l过点(1,1),且与轨迹Γ交于A,B两点,点M满足 = ,点O为坐标原点,延长线段OM与轨迹Γ交于点R,四边形OARB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有五人五钱,令上二人所得与下三人等.问各得几何?”其意思为:“现有甲乙丙丁戊五人依次差值等额分五钱,要使甲乙两人所得的钱与丙丁戊三人所得的钱相等,问每人各得多少钱?”根据题意,乙得( )
A. 钱
B. 钱
C.1钱
D. 钱
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以A、B、C、D、E为顶点的五面体中,AD⊥平面ABC,AD∥BE,AC⊥CB,AB=2BE=4AD=4.
(1)O为AB的中点,F是线段BE上的一点,BE=4BF,证明:OF∥平面CDE;
(2)当直线DE与平面CBE所成角的正切值为 时,求平面CDE与平面ABC所成锐二面角的余弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com