精英家教网 > 初中数学 > 题目详情
一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.
(1)A,B,C,D四点在同一个圆上吗?如果在,请写出证明过程;如果不在,请说明理由;
(2)过点D作直线l∥AC,求证:l是这个圆的切线.

【答案】分析:(1)根据直角三角形斜边的中线等于斜边的一半,可得AC的中点O到ABCD四点距离相等,故A,B,C,D四点在同一个圆上;(2)要证l是这个圆的切线,只需证明OD⊥l即可,根据等腰直角三角形的性质易得OD⊥AC,而l∥AC,易得证明.
解答:(1)解:A,B,C,D四点在同一个圆上.
证明:取AC的中点O,连接OD,OB,(2分)
∵△ABC和△ADC是直角三角形,
∴OB=OD=AC=OA=OC,(4分)
∴A,B,C,D四点在⊙O上.(5分)

(2)证明:∵Rt△ADC中,∠DAC=45°,
∴△DAC是等腰三角形,(7分)
∴OD⊥AC.(8分)
∵l∥AC,
∴OD⊥l,(9分)
∴l是⊙O的切线.(10分)
点评:本题考查多点共圆的证明及切线的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一副直角三角板由一块含30°的直角三角板与一块等腰直角三角板组成,且含30°角的三角板的较长直角边与另一三角板的斜边相等(如图1)

(1)如图1,这副三角板中,已知AB=2,AC=
2
3
2
3
,A′D=
6
6

(2)这副三角板如图1放置,将△A′DC′固定不动,将△ABC通过旋转或者平移变换可使△ABC的斜边BC经过△A′DC′′的直角顶点D.
方法一:如图2,将△ABC绕点C按顺时针方向旋转角度α(0°<α<180°)
方法二:如图3,将△ABC沿射线A′C′方向平移m个单位长度
方法三:如图4,将△ABC绕点A按逆时针方向旋转角度β(0°<β<180°)
请你解决下列问题:
①根据方法一,直接写出α的值为:
15°
15°

②根据方法二,计算m的值;
③根据方法三,求β的值.
(3)若将△ABC从图1位置开始沿射线A′C′平移,设AA′=x,两三角形重叠部分的面积为y,请直接写出y与x之间的函数关系式和相应的自变量x的取值范围.

查看答案和解析>>

同步练习册答案