(本题满分12分)
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为.
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
① 填写下表,画出函数的图象:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | | | | | | | | … |
科目:初中数学 来源: 题型:
(本题满分12分)在平面直角坐标系中,已知二次函数的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3).
(1)求此二次函数的表达式;
(2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°. 若存在,求出点P的坐标;若不存在,请说明理由;
(3)点K抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:江苏省苏州市高新区2013届七年级下学期期末考试数学试题 题型:解答题
(本题满分12分)在平面直角坐标系中,已知二次函数的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3).
(1)求此二次函数的表达式;
(2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°. 若存在,求出点P的坐标;若不存在,请说明理由;
(3)点K抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(湖北咸宁卷)数学 题型:解答题
(本题满分12分)如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时[来源:中教网],动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作,垂足为H,连接,.设点P的运动时间为秒.
①若△MPH与矩形AOCD重合部分的面积为1,求的值;
②点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com