精英家教网 > 初中数学 > 题目详情

若直线与直线相交于x轴上,则直线不经过(  )

A、第一象限    B、第二象限   C、第三象限    D、第四象限

 

【答案】

C

【解析】本题考查了一次函数与二元一次方程组. 根据直线与直线相交于x轴上,则可求出a的值,然后即可得出答案.

解:直线与直线相交于x轴上,

解得:

∵两直线相交于x轴上,故=0,

解得:a=1,∴y=

故y=x+a不经过第三象限,

故选C.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图6,在平面直角坐标系中,直线分别交轴、轴于点绕点顺时针旋转90后得到.

(1)求直线的解析式;
(2)若直线与直线相交于点,求的面积.

查看答案和解析>>

科目:初中数学 来源:第5章《反比例函数》中考题集(24):3、反比例函数的应用(解析版) 题型:解答题

已知双曲线y=与直线y=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》常考题集(43):20.7 反比例函数的图象、性质和应用(解析版) 题型:解答题

已知双曲线y=与直线y=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中数学 来源:2012年广东省广州市聚贤暨四中中考数学一模试卷(解析版) 题型:解答题

已知双曲线y=与直线y=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学原创试卷大赛(16)(解析版) 题型:解答题

(2008•南通)已知双曲线y=与直线y=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

同步练习册答案