精英家教网 > 初中数学 > 题目详情

【题目】已知,二次函数 y=(x+2)2 的图象与 x 轴交于点 A,与 y 轴交于点 B

(1)求点 A、点 B 的坐标;

(2)求 SAOB

(3)求对称轴方程;

(4)在对称轴上是否存在一点P,使以 PAOB 为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.

【答案】(1)点 B(0,4);(2)4;(3)x=﹣2;(4)点 P 的坐标为(﹣2,4)或(﹣2,﹣4)

【解析】

(1)令y=0求出点A的坐标,令x=0求出点B的坐标即可;

(2)求出OA、OB的长度,然后利用三角形的面积公式列式计算即可得解;

(3)根据二次函数解析式写出对称轴方程即可;

(4)根据平行四边形对边平行且相等可得AP=OB,再分点P在点A的上方和下方两种情况讨论求解.

(1) y=0,则(x+2)2=0,解得 x1=x2=﹣2,

所以,点 A(﹣2,0),

x=0,则 y=(0+2)2=4,

所以,点 B(0,4);

(2)A(﹣2,0),B(0,4),

OA=2,OB=4,

SAOBOAOB=×2×4=4;

(3)对称轴方程为直线 x=﹣2;

(4)∵以 P,A,O,B 为顶点的四边形为平行四边形,

AP=OB=4,

当点 P 在点 A 的上方时,点 P 的坐标为(﹣2,4), 当点 P 在点 A 的下方时,点 P 的坐标为(﹣2,﹣4),

综上所述,点 P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以 P,A,O,B 为顶点的四边形为平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点AAEBC,垂足为E,连接DEF为线段DE上一点,且AFE=B

1)求证:ADF∽△DEC

2)若AB=8AD=6AF=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的自然数组,如(3,6)为两个数的自然数组,因为(3×6)能被(3+6)整除;又如(15,30,60)为三个数的自然数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…

(1)求证:2nnn﹣2)(n≥3,n为整数)组成的数组是两个数的自然数组;

(2)若(4a,5a,6a)是三个数的自然数组,求满足条件的三位正整数a,并判断(4a+5,5a+5,6a+5)是否为自然数组.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线 y=ax2﹣5ax+c x 轴于点 A,点 A 的坐标为(4,0).

(1)用含 a 的代数式表示 c

(2) a时,求 x 为何值时 y 取得最小值,并求出 y 的最小值.

(3) a时,求 0≤x≤6 y 的取值范围.

(4)已知点 B 的坐标为(0,3),当抛物线的顶点落在△AOB 外接圆内部时,直接写出 a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.

(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;

(2)当DP为⊙O的切线时,求线段DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物流公司要把3000吨货物从M市运到W市.(每日的运输量为固定值)

(1)从运输开始,每天运输的货物吨数y(单位:吨)与运输时间x(单位:天)之间有怎样的函数关系式?

(2)因受到沿线道路改扩建工程影响,实际每天的运输量比原计划少20%,以致推迟1天完成运输任务,求原计划完成运输任务的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)

(1)画出△ABC关于原点对称的△A'B'C';

(2)将△A'B'C'绕点C'顺时针旋转90°,画出旋转后得到的△ABC″,并直接写出此过程中线段C'A'扫过图形的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtACB中,ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②BCD=25°,则∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,则AF=.其中正确的结论是______.(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若反比例函数y与一次函数y2x4的图象都经过点A(a2)

(1)求反比例函数y的表达式;

(2)当反比例函数y的值大于一次函数y2x4的值时,求自变量x的取值范围.

查看答案和解析>>

同步练习册答案