精英家教网 > 初中数学 > 题目详情
已知二次函数y=-x2+(m-2)x+m+1.
(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点.
(2)当m为何值时,这两个交点都在原点的左侧?
(3)当m为何值时,这个二次函数的图象的对称轴是y轴?
(1)证明:△=(m-2)2-4×(-1)×(m+1)
=m2+8,
∵m2≥0,
∴m2+8>0,即△>0,
∴不论m取任何实数,这个二次函数的图象必与x轴有两个交点;

(2)设二次函数的图象与x轴有两个交点坐标为(x1,0),(x2,0),则x1和x2为关于x的方程-x2+(m-2)x+m+1=0的两不等实数根,且x1<0,x2<0,
∴x1+x2=m-2<0,x1•x2=-(m+1)>0,
∴m<-1;
即m<-1时,这两个交点都在原点的左侧;

(3)根据题意得x=-
m-2
2×(-1)
=0,
解得m=2,
即m=2时,这个二次函数的图象的对称轴是y轴.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O为原点,已知A(2,0)、C(1,3
3
),将△OAC绕AC的中点G旋转180°,点O落到点B的位置,抛物线y=ax2-2
3
x经过点A,点D是抛物线的顶点.
(1)求抛物线的表达式;
(2)判断点B是否在抛物线上;
(3)若点P是x轴上A点左边的一个动点,当以P、A、D为顶点的三角形与△OAB相似时,求出点P的坐标;
(4)若点M是y轴上的一个动点,要使△MAD的周长最小,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=(x+m)2+k的顶点为(1,-4)
(1)求二次函数的解析式及图象与x轴交于A、B两点的坐标.
(2)将二次函数的图象沿x轴翻折,得到一个新的抛物线,求新抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式;
(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在直角坐标系中O是坐标原点,四边形AOCB是矩形,0C=6,OA=2,P是边AB上的任意一点.当点P在边AB上移动时,是否存在这样的点P使得OP⊥PC成立?若存在,请求出点P的坐标,画出满足条件的P点,并求出经过D、P、C三点的抛物线的对称轴;若不存在这样的P点,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了美化校园环境,某中学准备在一块空地(如图,矩形ABCD,AB=10m,BC=20m)上进行绿化.中间的一块(图中四边形EFGH)上种花,其他的四块(图中的四个Rt△)上铺设草坪,并要求AE=AH=CF=CG.那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH(中间种花的一块)面积最大?若存在,请求出该设计中AE的长和四边形EFGH的面积;若不存在,请说明理由!

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=kx2-2x-l与x轴有交点,则k的取值范围是(  )
A.k>-1B.k≤1且k≠0C.k<-1D.k≥-1且k≠0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究其中一个函数y=x2-5x+6及图象(如图),可得出表中第2行的相关数据.
(1)在表内的空格中填上正确的数;
(2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
(3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
y=x2+px+qpqx1x2d
y=x2-5x+6-561231
y=x2-
1
2
x
-
1
2
1
4
1
2
y=x2+x-2-2-23

查看答案和解析>>

同步练习册答案