精英家教网 > 初中数学 > 题目详情
如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.精英家教网
分析:首先由B、C两点把线段AD分成2:4:3的三部分,知CD=
1
3
AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=
1
2
AD,求出MD的长,最后由MC=MD-CD,求出线段MC的长.
解答:解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,
∴AB=
2
9
AD,BC=
4
9
AD,CD=
1
3
AD,
又∵CD=6,
∴AD=18,
∵M是AD的中点,
∴MD=
1
2
AD=9,
∴MC=MD-CD=9-6=3.
点评:利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.本题中B、C是线段AD的九等分点中的两个.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知A、C两点在双曲线y=
1x
上,点C的横坐标比点A的横坐标多2,AB⊥x轴,CD⊥x轴,CE⊥AB,垂足分别是B、D、E.
(1)当A的横坐标是1时,求△AEC的面积S1
(2)当A的横坐标是n时,求△AEC的面积Sn
(3)当A的横坐标分别是1,2,…,10时,△AEC的面积相应的是S1,S2,…,S10,求S1+S2+…+S10的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福田区二模)如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
11
3
11
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A、B两点的坐标分别为(2
3
,0)、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为
3
+1,
3
+1)或(
3
-1,1-
3
3
+1,
3
+1)或(
3
-1,1-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角,连接AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、N两点移动过程,它们的和是否有变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知E、F两点在线段BC上,AB=AC,BF=CE,你能判断线段AF和AE的大小关系吗?说明理由.

查看答案和解析>>

同步练习册答案