【题目】某校为了解八年级学生的视力情况,对八年级学生进行了一次视力调查,并将调查结果进行统计整理,绘制了频数分布表和频数分布直方图的一部分.
(1)在频数分布表中,a= ,b= ;
(2)将频数分布直方图补充完整;
(3)若将视力在4.6及以上的视力情况定义为“视力正常”,求“视力正常”的人数占被调查人数的百分比.
科目:初中数学 来源: 题型:
【题目】如图,点,
在反比例函数图象上,
轴于点
,
轴于点
,
.
(1)求,
的值并写出反比例函数的表达式;
(2)连接,
是线段
上一点,过点
作
轴的垂线,交反比例函数图象于点
,若
,求出点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,正方形ABPD的边长为3,将边DP绕点P顺时针旋转90°至PC,E、F分别为线段DP、CP上两个动点(不与D、P、C重合),且DE=CF,连接BE并延长分别交DF、DC于H、G.
(1)①求证:△BPE≌△DPF,②判断BG与DF位置关系并说明理由;
(2)当PE的长度为多少时,四边形DEFG为菱形并说明理由;
(3)连接AH,在点E、F运动的过程中,∠AHB的大小是否发生改变?若改变,请说出是如何变化的;若不改变,请求出∠AHB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC和关于原点O成中心对称图形,画出图形并写出
的各顶点的坐标;
(2)将△ABC绕着点O按顺时针方向旋转90°得到,画出图形,求出线段AC扫过部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是某古城几个地名的平面示意图,已知民俗街和博物馆的坐标分别为点,
,请仔细观察示意图完成以下问题.
(1)请根据题意在图上建立平面直角坐标系.
(2)在(1)的条件下,写出图上B,D两地点的坐标.
(3)某周末甲,乙,丙,丁等4位同学分别到古城楼,民俗街,文化广场,博物馆四个地点游玩,且每人只去一个地点,老师打电话问了赵,钱,孙,李等四位同学,赵说:“甲在民俗街,乙在文化广场”;钱说:“丙在博物馆,乙在民俗街”;孙说:“丁在民俗街,丙在文化广场”;李说:“丁在古城楼,乙在文化广场”.若知道赵,钱,孙,李每人都只说对了一半,则丙同学游玩的地点是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:
①abc<0;
②b<a﹣c;
③4a+2b+c>0;
④2c<3b;
⑤a+b<m(am+b),(m≠1的实数)
⑥2a+b+c>0,其中正确的结论的有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.
(1)求线段OC的长度;
(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;
(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com