【题目】如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.
【答案】(1)见解析;(2)(0<n<5);(3)线段BP的长为或15
【解析】
(1)由菱形的性质得出BA=BC,∠ABD=∠CBD.由SAS证明△ABE≌△CBE,即可得出结论.
(2)连结AC,交BD于点O,过点A作AH⊥BC于H,过点E作EF⊥BC于F,由菱形的性质得出AC⊥BD.由三角函数求出AO=OC=,BO=OD=2.由菱形面积得出AH=4,BH=3.由相似三角形的性质得出=,求出EF的长,即可得出答案.
(3)因为点P在线段BC的延长线上,所以∠EPC不可能为直角.分情况讨论:①当∠ECP=90°时,②当∠CEP=90°时,由全等三角形的性质和相似三角形的性质即可得出答案.
(1)∵四边形ABCD是菱形,
∴BA=BC,∠ABE=∠CBE.
在△ABE和△CBE中,,
又∵BE=BE,
∴△ABE≌△CBE
∴AE=CE.
(2)连接AC,交BD于点O,过点A作AH⊥BC,过点E作EF⊥BC,如图1所示,垂足分别为点H、F.
∵四边形ABCD是菱形,
∴AC⊥BD.
∵AB=5,sin∠ABD=,
∴AO=OC=,BO=OD=2.
∵ACBD=BCAH,
∴AH=4,BH=3.
∵AD∥BC,
∴=,
∴=,
∴=,
∴=,
∵EF∥AH,
∴=,
∴EF=,
∴y=PCEF=(5﹣n)=(0<n<5).
(3)因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:
①当∠ECP=90°时
∵△ABE≌△CBE,
∴∠BAE=∠BCE=90°,
∵cos∠ABP==,
∴=,
∴BP=;
②当∠CEP=90°时,
∵△ABE≌△CBE,
∴∠AEB=∠CEB=45°,
∴AO=OE=,
∴ED=,BE=3.
∵AD∥BP,
∴=,
∴=,
∴BP=15.
综上所述,当△EPC是直角三角形时,线段BP的长为或15.
科目:初中数学 来源: 题型:
【题目】如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】绿色植物销售公司打算销售某品种的“赏叶植物”,在针对这种“赏叶植物”进行市场调查后,绘制了以下两张函数图象.其中图①为一条直线,图②为一条抛物线,且抛物线顶点为(6,1),请根据图象解答下列问题:
(1)如果公司在3月份销售这种“赏叶植物”,单株获利多少元;
(2)请直接写出图象①中直线的解析式;
(3)请你求出公司在哪个月销售这种“赏叶植物”,单株获利最大?(备注:单株获利=单株售价﹣单株成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个口袋,口袋中装有两个分别标有数字2,3的小球,口袋中装有三个分别标有数字的小球(每个小球质量、大小、材质均相同).小明先从口袋中随机取出一个小球,用表示所取球上的数字;再从口袋中顺次取出两个小球,用表示所取两个小球上的数字之和.
(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;
(2)求的值是整数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与两坐标轴交于A、B两点,抛物线y=-x2+bx+c过A、B两点,且交x轴的正半轴于点C,点D是抛物线的顶点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式、对称轴和顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过反比例函数y=(k<0)的图象上一点A作AB⊥x轴于点B,连结AO,过点B作BC∥AO交y轴于点C,若点A的纵坐标为4,且tan∠BCO=,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,△ABC的位置如图所示.
(1)分别写出△ABC各个顶点的坐标;
(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;
(3)求线段BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com