精英家教网 > 初中数学 > 题目详情

如图2,△ABC中,∠1=∠2,∠EDC=∠BAC,AE=AF,∠B=60°,则图中的线段AF、BF、AE、EC、AD、BD、DC、DF中与DE的长相等的线段有______条.

连接FE交AD于O,△AFE为等腰三角形.

∵∠1=∠2,

∴AO⊥EF,且FO=OE,得到DF=DE.

∵∠EDC=∠BAC,

∴△ABC≌△EDC,

∵∠ABC=60°,

∴∠DEC=60°,∠AED=120°,则∠AFD=120°,

∴△FBD为等边三角形.

∴BF=BD=DF=DE.因此,与DE的长相等的线段有3条.

(请注意:当∠BAC=60°时,除了AD外的其他7条线段均与DE的长度相等.)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有:
①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,∠BAC=100°,MP、NO分别垂直平分AB、AC,求∠1,∠2的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求证:△DEH∽△BCA.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,则∠ACD的度数是(  )
A、35°B、45°C、55°D、65°

查看答案和解析>>

同步练习册答案