精英家教网 > 初中数学 > 题目详情
(2012•高邮市一模)已知△ABC中,∠ACB=90°,AC=6,BC=8,过点A作直线MN⊥AC,点P是直线MN上的一个动点(与点A不重合),连接CP交AB于点D,设AP=x,AD=y.

(1)如图1,若点P在射线AM上,求y与x的函数解析式;
(2)射线AM上是否存在一点P,使以点D、A、P组成的三角形与△ABC相似,若存在,求AP的长,若不存在,说明理由;
(3)如图2,过点B作BE⊥MN,垂足为E,以C为圆心、AC为半径的⊙C与以P为圆心PD为半径的动⊙P相切,求⊙P的半径.
分析:(1)先根据相似三角形的判定定理得出△APD∽△BCD,故
AP
BC
=
AD
BD
,再在Rt△ABC中,根据勾股定理得出AB的长,AP=x,AD=y,即可得出BD=AB-AD=10-y,故可得出结论;
(2)假设射线AM上存在一点P,使以点D、A、P组成的三角形与△ABC相似,由AM∥BC,可知∠B=∠BAE,再由∠ACB=90°,∠APD≠90°,可得出△ABC∽△PAD,故
AB
BC
=
PA
AD
,进而可得出结论;
(3))由⊙C与⊙P相切,可得AP=x,可分四种情况进行讨论:
①点P在射线MA上,当⊙C与⊙P外切时,PE=x+8,PC=x+8-6=x+2,在直角三角形PAC中,由AC2+AP2=PC2,可得x2+62=(x+2)2,故可得出x的值;
②当⊙C与⊙P内切时,PE=x-8,PC=x-8-6=x-14,在直角三角形PAC中,AC2+AP2=PC2,即x2+62=(x-14)2,故可得出x的值.
解答:解:(1)∵AM⊥AC,
∴∠CAM=90°,
又∵∠ACB=90°,
∴∠CAM+∠ACB=180°,
∴AM∥BC,
∴∠BCP=∠APC,∠CBA=∠BAP,
∴△APD∽△BCD,
AP
BC
=
AD
BD

在Rt△ABC中,AC=6,BC=8,
根据勾股定理得:AB=
AC2+BC2
=10,
又∵AP=x,AD=y,
∴BD=AB-AD=10-y,
x
8
=
y
10-y

则y=
10x
x+8
(x>0);

(2)假设射线AM上存在一点P,使以点D、A、P组成的三角形与△ABC相似,
∵AM∥BC,
∴∠B=∠BAE,
∵∠ACB=90°,∠APD≠90°,
∴△ABC∽△PAD,
AB
BC
=
PA
AD

10
8
=
x
10x
x+8

解得:x=4.5,
∴当AP的长为4.5时,△ABC∽△PAD;

(3)∵⊙C与⊙P相切,AP=x,
①点P在线AE上,当⊙C与⊙P外切时,PE=x+8,PC=x+8-6=x+2,
在直角三角形PAC中,AC2+AP2=PC2
∴x2+62=(x+2)2
解得:x=8,
∴⊙P的半径为16;
②当⊙C与⊙P内切时,PE=x-8,PC=x-8-6=x-14,
在直角三角形PAC中,AC2+AP2=PC2
∴x2+62=(x-14)2
解得:x=
16
7

③点P在射线EM上时,⊙C与⊙P不可能相切.
∴当⊙C与⊙P相切时,⊙P的半径为16或
16
7
点评:本题考查的是相似三角形的综合题,涉及到相似三角形的判定与性质及勾股定理,在解答(3)时要注意进行分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•高邮市一模)学校以1班学生的地理测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成两幅统计图,结合图中信息填空:
(1)D级学生的人数占全班人数的百分比为
4%
4%

(2)扇形统计图中C级所在扇形圆心角度数为
72°
72°

(3)该班学生地理测试成绩的中位数落在
B
B
级内;
(4)若该校共有1500人,则估计该校地理成绩得A级的学生约有
390
390
人.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•高邮市一模)一次函数y=-x+6与反比例函数y=
8x
的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形周长为
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•高邮市一模)如图,DE是△ABC的中位线,M是DE的中点,若△ABC的面积为48cm2,则△DMN的面积为
2
2
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•高邮市一模)如图,A、B、C、D是⊙O四等分点,动点P沿O-C-D-O路线作匀速运动,设运动时间为xs,∠APB=y°,右图表示y与x之间函数关系,则点M的横坐标为
π
2
+1
π
2
+1

查看答案和解析>>

同步练习册答案