19£®¼ºÖª¹ØÓÚx£¬yµÄ·½³Ì×é$\left\{\begin{array}{l}{3x+2y=m+1}\\{4x+3y=m-1}\end{array}\right.$
£¨1£©µ±2m-6=0ʱ£¬ÇóÕâ¸ö·½³Ì×éµÄ½â£»
£¨2£©µ±Õâ¸ö·½³Ì×éµÄ½âx¡¢yÂú×ã$\left\{\begin{array}{l}{2£¨y+4£©-£¨3x-1£©¡Ü0}\\{x-y-10¡Ü0}\end{array}\right.$£¬ÇómµÄÈ¡Öµ·¶Î§£º
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èç¹ûÈý½ÇÐÎABOµÄ¶¥µã×ø±ê·Ö±ð·ÖA£¨x£¬0£©£¬B£¨0£¬y£©£¬O£¨0£¬0£©£¬ÄÇôÈý½ÇÐÎAOBÃæ»ýµÄ×î´óÖµ¡¢×îСֵ¸÷ÊǶàÉÙ£¿

·ÖÎö ÏÈÓÃm°Ñx£¬y±íʾ³öÀ´$\left\{\begin{array}{l}x=m+5\\ y=-m-7\end{array}\right.$£¬
£¨1£©µ±2m-6=0ʱ£¬Çó³öm´úÈë$\left\{\begin{array}{l}x=m+5\\ y=-m-7\end{array}\right.$ÖУ¬Çó³öx£¬y¼´¿É£»
£¨2£©°Ñ$\left\{\begin{array}{l}x=m+5\\ y=-m-7\end{array}\right.$´úÈë$\left\{\begin{array}{l}{2£¨y+4£©-£¨3x-1£©¡Ü0}\\{x-y-10¡Ü0}\end{array}\right.$£¬Çó³ömµÄ·¶Î§£»
£¨3£©ÓÉ-4¡Üm¡Ü-1Çó³öx£¬yµÄ·¶Î§£¬¼´¿ÉÈ·¶¨³öÈý½ÇÐÎÃæ»ýµÄ×î´óÖµºÍ×îСֵ£®

½â´ð ½â£ºÓÉ·½³Ì×é$\left\{\begin{array}{l}3x+2y=m+1\\ 4x+3y=m-1\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}x=m+5\\ y=-m-7\end{array}\right.$£¬
£¨1£©¡ß2m-6=0£¬
¡àm=3£¬
¡à$\left\{\begin{array}{l}x=8\\ y=-10\end{array}\right.$£¬
£¨2£©¡ß·½³Ì×éµÄ½â$\left\{\begin{array}{l}x=m+5\\ y=-m-7\end{array}\right.$Âú×ã$\left\{\begin{array}{l}{2£¨y+4£©-£¨3x-1£©¡Ü0}\\{x-y-10¡Ü0}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}2£¨-m-7+4£©-[3£¨m+5£©-1]¡Ü0\\£¨m+5£©-£¨-m-7£©-10¡Ü0\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}m¡Ý-4\\ m¡Ü-1\end{array}\right.$£¬
¡à-4¡Üm¡Ü-1£¬
£¨3£©¡ß-4¡Üm¡Ü-1£¬
¡à1¡Üm+5¡Ü4£¬-6¡Ü-m-7¡Ü-3£¬
¡ß$\left\{\begin{array}{l}x=m+5\\ y=-m-7\end{array}\right.$£¬
¼´1¡Üx¡Ü4£¬-6¡Üy¡Ü-3£¬
¡à1¡Ü|x|¡Ü4£¬3¡Ü|y|¡Ü6
Èý½ÇÐÎAOBÃæ»ýµÄ×îСֵ=$\frac{1}{2}¡Á1¡Á3=\frac{3}{2}$
Èý½ÇÐÎAOBÃæ»ýµÄ×î´óÖµ=$\frac{1}{2}¡Á4¡Á6=12$£®

µãÆÀ ´ËÌâÊÇÈý½ÇÐÎ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁË·½³Ì×éµÄ½â·¨£¬·½³ÌµÄ½â·¨£¬²»µÈʽ×éµÄ½â·¨£¬Èý½ÇÐÎÃæ»ýµÄÈ·¶¨£¬½â±¾ÌâµÄ¹Ø¼üÊÇÓÃm±íʾ³öx£¬y£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®£¨1£©½â·½³Ì×飺$\left\{\begin{array}{l}{4£¨x-y-1£©=3£¨1-y£©-2}\\{\frac{x}{2}+\frac{y}{3}=2}\end{array}\right.$
£¨2£©½â²»µÈʽ×飺$\left\{\begin{array}{l}{x-3£¨x-2£©¡Ý4}\\{\frac{1+2x}{3}£¾x-1}\end{array}\right.$²¢°ÑËüµÄ½â¼¯±íʾÔÚÊýÖáÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ä³Í¬Ñ§Ê¹ÓüÆËãÆ÷Çó15¸öÊýµÄƽ¾ùÊýʱ£¬´í½«ÆäÖÐÒ»¸öÊý¾Ý15ÊäÈëΪ45£¬ÄÇôÓÉ´ËÇóµÃµÄƽ¾ùÊýÓëʵ¼Êƽ¾ùÊýµÄ²îÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®-2D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªx=$\frac{1}{2}$£¨$\sqrt{5}$+$\sqrt{3}$£©£¬y=$\frac{1}{2}$£¨$\sqrt{5}$-$\sqrt{3}$£©£¬ÇóÏÂÁи÷ʽµÄÖµ£º
£¨1£©x2-xy+y2£»
£¨2£©$\frac{x}{y}$+$\frac{y}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬E¡¢FÊǶԽÇÏßBDÉϵÄÁ½µã£¬Èç¹ûÌí¼ÓÒ»¸öÌõ¼þ£¬Ê¹¡÷ABE¡Õ¡÷CDF£¬ÔòÌí¼ÓµÄÌõ¼þ²»ÄÜΪ£¨¡¡¡¡£©
A£®BE=DFB£®BF=DEC£®AE=CFD£®¡Ï1=¡Ï2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬Ä³Ð£¸ù¾ÝѧÉúÉÏѧ·½Ê½µÄÒ»´Î³éÑùµ÷²é½á¹û£¬»æÖƳöÒ»¸öδÍê³ÉµÄÉÈÐÎͳ¼Æͼ£¬Èô³Ë³µµÄѧÉúÓÐ150ÈË£¬Ôò¾Ý´Ë¹À¼Æ²½ÐеÄÓÐ400ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®£¨1£©½â·½³Ì×飺$\left\{\begin{array}{l}{4x-3y=11}\\{2x+y=13}\end{array}\right.$£»
£¨2£©½â²»µÈʽ×飺$\left\{\begin{array}{l}{3x+4£¾5x-2}\\{x¡Ý\frac{1}{3}x-\frac{4}{3}}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ð¡ºìͬѧ½«×Ô¼º5Ô·ݵĸ÷ÏîÏû·ÑÇé¿öÖÆ×÷³ÉÉÈÐÎͳ¼Æͼ£¨Èçͼ£©£¬´ÓͼÖпɿ´³ö£¨¡¡¡¡£©
A£®¸÷ÏîÏû·Ñ½ð¶îÕ¼Ïû·Ñ×ܽð¶îµÄ°Ù·Ö±È
B£®¸÷ÏîÏû·ÑµÄ½ð¶î
C£®¸÷ÏîÏû·Ñ½ð¶îµÄÔö¼õ±ä»¯Çé¿ö
D£®Ïû·ÑµÄ×ܽð¶î

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®x2-x=0ÊǶþÏî·½³ÌB£®$\frac{x-1}{2}-\frac{x}{3}=4$ÊÇ·Öʽ·½³Ì
C£®$\sqrt{2}{x^2}-2x=\sqrt{3}$ÊÇÎÞÀí·½³ÌD£®2x2-y=4ÊǶþÔª¶þ´Î·½³Ì

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸