分析 ①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;
②由AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,又AD∥BC,所以$\frac{AE}{BC}=\frac{AF}{FC}=\frac{1}{2}$,故②正确;
③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=$\frac{1}{2}$BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;
④根据三角函数的定义得到tan∠CAD=$\frac{\sqrt{2}}{2}$,故④错误;
⑤根据△AEF∽△CBF得到$\frac{EF}{BF}=\frac{AE}{BC}=\frac{1}{2}$,求出S△AEF=$\frac{1}{2}$S△ABF,S△ABF=$\frac{1}{6}$S矩形ABCD;S四边形CDEF=S△ACD-S△AEF=$\frac{1}{2}$S矩形ABCD-$\frac{1}{12}$S矩形ABCD=$\frac{5}{12}$S矩形ABCD,即可得到S四边形CDEF=$\frac{5}{2}$S△ABF,故⑤正确.
解答 解:过D作DM∥BE交AC于N,
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于点F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正确;
∵AD∥BC,
∴△AEF∽△CBF,
∴$\frac{AE}{BC}=\frac{AF}{CF}$,
∵AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,
∴$\frac{AF}{CF}=\frac{1}{2}$,
∴CF=2AF,故②正确,
∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴BM=DE=$\frac{1}{2}$BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DF=DC,故③正确;
由△BAE∽△ADC,有$\frac{AB}{AD}=\frac{\frac{AD}{2}}{AB}$,
∴$\frac{A{D}^{2}}{A{B}^{2}}=\frac{1}{2}$,
∴$\frac{AD}{AB}=\frac{\sqrt{2}}{2}$,
∵tan∠CAD=$\frac{CD}{AD}=\frac{AB}{AD}$,
∴tan∠CAD=$\frac{\sqrt{2}}{2}$,故④错误;
∵△AEF∽△CBF,
∴$\frac{EF}{BF}=\frac{AE}{BC}=\frac{1}{2}$,
∴S△AEF=$\frac{1}{2}$S△ABF,S△ABF=$\frac{1}{6}$S矩形ABCD
∴S△AEF=$\frac{1}{12}$S矩形ABCD,
又∵S四边形CDEF=S△ACD-S△AEF=$\frac{1}{2}$S矩形ABCD-$\frac{1}{12}$S矩形ABCD=$\frac{5}{12}$S矩形ABCD,
∴S四边形CDEF=$\frac{5}{2}$S△ABF,故⑤正确;
故答案为:①②③⑤.
点评 此题是四边形综合题,主要考查了相似三角形的判定和性质,矩形的性质,平行四边形的判定和性质,图形面积的计算,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | $\sqrt{6}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{5}{12}$ | B. | $\frac{12}{13}$ | C. | $\frac{12}{5}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com