【题目】如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且四边形AOBC是矩形,BC=6,矩形AOBC的面积为18.
(1)求线段OC的长.
(2)求直线AB的解析式.
科目:初中数学 来源: 题型:
【题目】如图1的7张长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )
A. a=b B. a=2b
C. a=3b D. a=4b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)仔细观察,在图2中“8字形”的个数: 个;
(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,可求得∠P的度数是 ;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,请直接写出∠P与∠D、∠B之间存在的数量关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.当AB⊥OM,且△ADB有两个相等的角时,∠OAC的度数为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF分别交AD、BC于点E、F,
求证:OE=OF.
(2)在图①中,过点O作直线GH分别交AB、CD于点G、H,且满足GH⊥EF,连结EG、GF、FH、HE.如图②,试判断四边形EGFH的形状,并说明理由;
(3)在(2)的条件下,
若平行四边形ABCD变为矩形时,四边形EGFH是 ;
若平行四边形ABCD变为菱形时,四边形EGFH是 ;
若平行四边形ABCD变为正方形时,四边形EGFH是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com