精英家教网 > 初中数学 > 题目详情
如图所示,已知直线y=kx-1与抛物线y=ax2+bx+c交于A(-3,2)、B(0,-1)两精英家教网点,抛物线的顶点为C(-1,-2),对称轴交直线AB于点D,连接OC.
(1)求k的值及抛物线的解析式;
(2)若P为抛物线上的点,且以P、A、D三点构成的三角形是以线段AD为一条直角边的直角三角形,请求出满足条件的点P的坐标;
(3)在(2)的条件下所得的三角形是否与△OCD相似?请直接写出判断结果,不必写出证明过程.
分析:(1)将点A的坐标代入直线AB的解析式中,即可确定k的值;根据A、B的坐标,可用待定系数法确定抛物线的解析式.
(2)根据抛物线的解析式,易求得D点坐标,可得OB=OD,即△OBD是等腰直角三角形;若△PAD是以AD为直角边的直角三角形,那么可分两种情况:
①以D为直角顶点,过D作直线l1⊥AD,直线l1与抛物线的交点即为所求的P点,设直线l1与y轴的交点为E,由于△ODB是等腰直角三角形,故△ODE也是等腰直角三角形,即OD=OE,由此可得E点坐标,进而可根据D、E的坐标求出直线l1的解析式,联立抛物线的解析式,即可得P点坐标;
②以A为直角顶点,过A作直线l2⊥AD,同理直线l2与抛物线的交点也符合P点的要求,由于直线l1∥直线l2,根据直线l2的斜率和A点的坐标,即可求出直线l2的解析式,然后联立抛物线的解析式,可得P点的坐标.
(3)根据C、D坐标,易得OC、CD的长,若(2)的直角三角形与△OCD相似,那么它们的直角边应该对应成比例,可先求出(2)中直角三角形的直角边长,然后再进行判断.
解答:精英家教网解:(1)∵直线y=kx-1经过A(-3,2),
∴把点A(-3,2)代入y=kx-1得:
2=-3k-1,∴k=-1,
把A(-3,2)、B(0,-1)、C(-1,-2)代入y=ax2+bx+c
2=9a-3b+c
-1=c
-2=a-b+c

a=1
b=2
c=-1

∴抛物线的解析式为y=x2+2x-1.

(2)由
x=-1
y=-x-1
得D(-1,0),即点D在x轴上,
且|OD|=|OB|=1,
∴△BDO为等腰直角三角形,
∴∠BDO=45°,
①过点D作l1⊥AB,交y轴于E,交抛物线于P1、P2两点,连接P1A、P2A,
则△P1AD、△P2AD都是满足条件的直角三角形,
∵∠EDO=90°-∠BDO=45°,
∴|OE|=|OD|=1,
∴点E(0,1),
∴直线l1的解析式为y=x+1,
y=x+1
y=x2+2x-1

解得:
x1=-2
y1=-1
x2=1
y2=2

∴满足条件的点为P1(-2,-1)、P2(1,2);
②过点A作l2⊥AB,交抛物线于另一点P3,连接P3D,则△P3AD是满足条件的直角三角形,
∵l1∥l2且l2过点A(-3,2)
∴l2的解析式为y=x+5,
y=x+5
y=x2+2x-1

解得:
x3=2
y3=7
x4=-3
y4=2
(舍去),
∴P3的坐标为(2,7),
综上所述,满足条件的点为P1(-2,-1)、P2(1,2)、P3(2,7).

(3)∵P1(-2,-1),A(-3,2),D(-1,0),
∴P1D=
2
,AD=2
2

而OC=1,CD=2,即P1D:AD=OC:CD,
又∵∠OCD=∠P1AD=90°,
∴△P1AD∽△OCD,
同理可求得△P2AD与△OCD不相似,△P3AD与△OCD不相似;
故判断结果如下:
△P1AD∽△OCD,
△P2AD与△OCD不相似;
△P3AD与△OCD不相似.
点评:此题考查了用待定系数法确定函数解析式的方法、直角三角形的判定、函数图象交点坐标的求法、相似三角形的判定和性质等知识,(2)题中,一定要根据直角三角形的不同直角顶点分类讨论,以免漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角精英家教网三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图所示,已知直线a∥b,被直线L所截,如果∠1=69°36′,那么∠2=
69
36
分.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知直线AB过点C(1,2),且与x轴、y轴分别交于点A、B,CD⊥x轴于D,CE⊥y轴于E,CF交y轴于G,交x轴于F.(F在原点O的左侧)
(1)当直线AB的位置正好使得△ACD≌△CBE时,求A点的坐标及直线AB的解析式.
(2)若S四边形ODCE=S△CDF,当直线AB的位置正好使得FC⊥AB时,求A点的坐标及BC的长.
(3)在(2)成立的前提下,将△FOG延y轴对折得△F′O′G′(对折后F、O、G的对应点分别为F′、O′、G′),将△F′O′G′沿x轴正方向精英家教网平移,设平移过程中△F′O′G′与四边形ODCE重叠部分面积为y,OO′的长为x(0≤x≤1),求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知直线y=kx-2经过M点,求此直线与x轴交点坐标和直线与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示:已知直线y=
1
2
x
与双曲线y=
k
x
(k>0)
交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)过A点作AC⊥x轴于C点,求△AOC的面积.

查看答案和解析>>

同步练习册答案