精英家教网 > 初中数学 > 题目详情
4.在一个暗盒中放有若干个白色球和2个黑色球(这些球除颜色外无其他区别),若从中随机取出1个球是白色的概率是0.6,那么在暗盒中随机取出2个球恰好都是白色球的概率是0.3.

分析 首先设有x个白球,由概率公式可得:$\frac{x}{x+2}$=0.6,解此方程即可求得白球的个数,再根据题意画出树状图,由树状图求得所有等可能的结果与在暗盒中随机取出2个球恰好都是白色球的情况,继而求得答案.

解答 解:设有x个白球,
根据题意得:$\frac{x}{x+2}$=0.6,
解得:x=3,
经检验:x=3是原分式方程的解;
画树状图得:

∵共有20种等可能的结果,在暗盒中随机取出2个球恰好都是白色球的有6种情况,
∴在暗盒中随机取出2个球恰好都是白色球的概率是:$\frac{6}{20}$=0.3.
故答案为:0.3.

点评 此题考查了列表法或树状图法求概率.注意利用方程思想求得白球的个数是关键.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD=36°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.关于二次函数y=x2-2x+1-a2图象,以下判断错误的是(  )
A.开口方向确定B.对称轴位置确定
C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xOy中,抛物线y=-$\frac{3}{8}$x2+$\frac{9}{4}$x+6与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,直线l经过点A和点C,连接BC.将直线l沿着x轴正方向平移m个单位(0<m<10)得到直线l′,l′交x轴于点D,交BC于点E,交抛物线于点F.

(1)求点A,点B和点C的坐标;
(2)如图2,将△EDB沿直线l′翻折得到△EDB′,求点B′的坐标(用含m的代数式表示);
(3)在(2)的条件下,当点B′落在直线AC上时,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.正方形ABCD的边长为12,在其角上去掉两个全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH顶点分别在正方形ABCD的边上,且EH过N点,则正方形EFGH的边长是(  )
A.10B.3$\sqrt{10}$C.4$\sqrt{5}$D.3$\sqrt{10}$或4$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,已知a∥b,三角板的直角顶点在直线b上,∠1=54°,那么∠2等于(  )
A.45°B.36°C.54°D.126°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.
(1)判断四边形ABCD的形状并加以证明;
(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.
①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);
②如果∠C=60°,那么$\frac{AP}{PB}$为何值时,B′P⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.化简($\frac{x}{x-1}$-$\frac{2x+2}{{x}^{2}-1}$)$÷\frac{x-2}{{x}^{2}-x}$的结果是(  )
A.xB.$\frac{1}{x}$C.$\frac{x+1}{x-1}$D.$\frac{x-1}{x+1}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中说法正确的是(  )
A.①②B.①②③C.①②④D.①②③④

查看答案和解析>>

同步练习册答案