精英家教网 > 初中数学 > 题目详情

如图所示,矩形ABCD中,AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、MN、FN,过ΔFMN三边的中点作ΔPQW.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:

(1)说明ΔFMN∽ΔQWP;

(2)设0≤x≤4.试问x为何值时,ΔPQW为直角三角形?

(3)试用含的代数式表示MN2,并求当x为何值时,MN2最小?求此时MN2的值.

 

 

(1)证明略

(2)当时,ΔPQW为直角三角形

(3)2

解析:解:(1)由题意可知P、W、Q分别是ΔFMN三边的中点,

∴PW是ΔFMN的中位线,即PW∥MN

∴ΔFMN∽ΔQWP------3分

(2)由(1)得,ΔFMN∽ΔQWP,故当ΔQWP为直角三角形时,ΔFMN为直角三角形,反之亦然.

由题意可得 DM=BN=x,AN=6-x,AM=4-x,

由勾股定理分别得 ==+=+16-----5分

①当=+时,+=++

解得  -----6分

②当=+时,+=++

此方程无实数根----7分

=+时,=+++

解得  (不合题意,舍去),------8分

综上,当时,ΔPQW为直角三角形;------9分

(3)①当0≤x≤4,即M从D到A运动时,MN≥AN,AN=6-x,

故只有当x=4时,MN的值最小,MN2的值也最小,此时MN=2,MN2=4 -----10分

②当4<x≤6时,=+=+

=

当x=5时,MN2取得最小值2,

∴当x=5时, MN2的值最小,此时MN2=2.-------12分

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒
3
个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.
(1)当t为何值时,点M与点O重合;
(2)求点P坐标和等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.
(1)求证:四边形DAEF是平行四边形;
(2)探究下列问题:(只填满足的条件,不需证明)
①当△ABC满足
∠BAC=150°
条件时,四边形DAEF是矩形;
②当△ABC满足
AB=AC≠BC
条件时,四边形DAEF是菱形;
③当△ABC满足
∠BAC=60°
条件时,以D、A、E、F为顶点的四边形不存在.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图①在矩形ABCD中,动点P从点B出发,沿着BC、CD、DA运动到点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图②所示,则△ABC的周长为
12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC是等边三角形,点O为是AC的中点,OB=12,动点P在线段AB上从点A向点B以每秒
3
个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在直线OB上,取OB的中点D,以OD为边在△AOB内部作如图所示的矩形ODEF,点E在线段AB上.
(1)求当等边△PMN的顶点M运动到与点O重合时t的值;
(2)求等边△PMN的边长(用t的代数式表示);
(3)设等边△PMN和矩形ODE F重叠部分的面积为S,请求你直接写出当0≤t≤2秒时S与t的函数关系式,并写出对应的自变量t的取值范围;
(4)点P在运动过程中,是否存在点M,使得△EFM是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是(  )

查看答案和解析>>

同步练习册答案