【题目】已知在△ABC中,∠BAC=90°,∠BAC和∠ABC的平分线交于点P
(1)如图1,在BC上取一点D,使得DB=AB,连接PD,△ABP与△DBP全等吗?为什么?
(2)在(1)的条件下,若DP=DC,则BC=AB+AP是否成立?请说明理由;
(3)如图2,在AC上取一点E,使得AE=AB,连接PE、PC,若∠ABC=60°,求∠EPC的度数.
【答案】(1)△ABP与△DBP全等(2)成立(3)15°
【解析】
(1)利用SAS定理证明△ABP与△DBP全等;
(2)根据全等三角形的性质得到AP=DP,AB=DB,结合图形证明即可;
(3)证明△ABP≌△AEP,根据全等三角形的性质得到∠AEP=∠ABP=∠ABC=30°,得到答案.
(1)△ABP与△DBP全等
理由如下:因为BP是∠ABC的平分线,
所以∠ABP=∠DBP.
在△ABP和△DBP中,
,
∴△ABP≌△DBP(SAS);
(2)成立.
理由如下:由(1)知△ABP≌△DBP,
∴AP=DP,AB=DB,
∵DP=DC.
∴AP=DC.
∴BC=DB+DC=AB+AP;
(3)因为P是∠BAC和∠ABC的平分线的交点,
所以∠BAP=∠EAP,PC是∠ACB的平分线.
因为∠ABC=60°,∠BAC=90°,
所以∠ACB=90°-∠ABC=30°.
所以∠ECP=∠PCB=15°.
在△ABP和△AEP中,
,
∴△ABP≌△AEP(SAS),
∴∠AEP=∠ABP=∠ABC=30°.
∴∠AEP=∠ACB=30°.
∴EP∥CB.
∴∠EPC=∠PCB=15°.
科目:初中数学 来源: 题型:
【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形纸片ABC中,AD⊥BC与点D,BC=2,AD=,沿AD剪成两个三角形.用这两个三角形拼成平行四边形,该平行四边形中较长对角线的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明袋子中有1个红球和3个白球,这些球除颜色外都相同.
(1)从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率;
(2)在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,
(1)求证:△CMN是等边三角形;
(2)判断CN与⊙O的位置关系,并说明理由;
(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(取 ,计算结果保留一位小数)
(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com