精英家教网 > 初中数学 > 题目详情
如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )

A.
B.
C.
D.不确定
【答案】分析:过P点作PE⊥AC,PF⊥BD,由矩形的性质可证△PEA∽△CDA和△PFD∽△BAD,根据,即,两式相加得PE+PF=,即为点P到矩形的两条对角线AC和BD的距离之和.
解答:法1:
解:过P点作PE⊥AC,PF⊥BD
∵矩形ABCD
∴AD⊥CD
∴△PEA∽△CDA

∵AC=BD==5
…①
同理:△PFD∽△BAD

…②
∴①+②得:
∴PE+PF=
即点P到矩形的两条对角线AC和BD的距离之和是
法2:
连接OP.
∵AD=4,CD=3,
∴AC==5,
又∵矩形的对角线相等且互相平分,
∴AO=OD=2.5cm,
∴S△APO+S△POD=×2.5•PE+×2.5•PF=×2.5(PE+PF)=×3×4,
∴PE+PF=
点评:根据矩形的性质,结合相似三角形求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.
(1)如图1,当点P为线段EC中点时,易证:PR+PQ=
125
(不需证明).
(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点E是矩形ABCD中BC边的中点,AB=6,当AE⊥DE时,矩形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合.若BC=3,则折痕CE的长为
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宝应县一模)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,求折痕CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是矩形ABCD对角线BD上的一个动点,AB=6,AD=8,则PA+PC的最小值为
10
10

查看答案和解析>>

同步练习册答案