精英家教网 > 初中数学 > 题目详情

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.

(1)求此抛物线的解析式;

(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由。

 

【答案】

(1)所求抛物线的表达式为:  (2)

(3)为等腰三角形,理由点E和点B关于直线OC轴对称,所以CE=CB

【解析】

试题分析:(1)解方程x2-10x+16=0得x1=2,x2=8,

由题意得:A(-6,0),C(0,8),B(2,0)

∵点C(0,8)在抛物线y=ax2+bx+c的图象上,∴c=8,

将A(-6,0)、B(2,0)代入表达式,得

解得       

∴所求抛物线的表达式为:    

(2)由 A(-6,0),C(0,8),B(2,0)得:AB=8,OC=8,OA=6,

∵AE="m," ∴BE="8-m."   

在Rt △AOC中,由勾股定理得:

  

中BE边上的高为h.

∵EF//AC

,即  

(3) 由(2)知,S存在最大值,最大值为8平方单位, 

此时,m=4,所以点E坐标为(-2,0), 

点E和点B关于直线OC轴对称;为等腰三角形。

考点:抛物线,等腰三角形,相似三角形

点评:本题考查抛物线,等腰三角形,要求考生会用待定系数法求函数的解析式,掌握抛物线的性质,熟悉等腰三角形的判定方法,会判定两个三角形相似

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线yax2bxc(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式.

(2)点D在线段AB上且ADAC,若动点PA出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由.

(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐

标;若存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0).
【小题1】填空:抛物线的对称轴为直线x=______,抛物线与x轴的另一个交点D的坐标为______;
【小题2】求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线yax2bxc(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2012届山东邹城北宿中学九年级3月月考数学试卷(带解析) 题型:解答题

已知抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)若点D(m,m+1)在第一象限的抛物线上, 求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连结BD,若点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2010-2011年浙江省嵊州市九年级上学期期末考试数学卷 题型:解答题

(本小题满分14分)

如图,已知抛物线yax2bxcx轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3)。设抛物线的顶点为D,求解下列问题:

1.(1)求抛物线的解析式和D点的坐标;

2.(2)过点D作DF∥轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;

3.(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由。

 

查看答案和解析>>

同步练习册答案