精英家教网 > 初中数学 > 题目详情

为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:

 

租金(单位:元/台•时)

挖掘土石方量(单位:m3/台•时)

甲型挖掘机

100

60

乙型挖掘机

120

80

(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?

(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?


解:(1)设甲、乙两种型号的挖掘机各需x台、y台.

依题意得:

解得

答:甲、乙两种型号的挖掘机各需5台、3台;

 

(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.

依题意得:60m+80n=540,化简得:3m+4n=27.

∴m=9﹣n,

∴方程的解为

当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;

当m=1,n=6时,支付租金:100×1+120×6=820元,符合要求.

答:有一种租车方案,即租用1辆甲型挖掘机和3辆乙型挖掘机

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;

(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;

(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正方形ABCD的边CD与正方形CGEF的边CE重合,O是EG的中点,∠EGC的评分项GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:

①GH⊥BE;②HOBG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.

其中正确的结论有(  )

 

A.

1个

B.

2个

C.

3个

D.

4个

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:(﹣1)2014+()﹣1+()0+

查看答案和解析>>

科目:初中数学 来源: 题型:


下列计算正确的是(  )

    A.                       3a﹣2a=1                     B.                             a2+a5=a7   C. a2•a4=a6  D. (ab)3=ab3

查看答案和解析>>

科目:初中数学 来源: 题型:


早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:

①打电话时,小刚和妈妈的距离为1250米;

②打完电话后,经过23分钟小刚到达学校;

③小刚和妈妈相遇后,妈妈回家的速度为150米/分;

④小刚家与学校的距离为2550米.其中正确的个数是(  )

    A.                       1个                             B.                             2个  C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.

(1)求a,b的值;

(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);

(3)在(2)的条件下,当SACN=SPMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,▱ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点H,连接EM.若▱ABCD的周长为42cm,FM=3cm,EF=4cm,则EM=  cm,AB=  cm.

查看答案和解析>>

同步练习册答案