精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,AB是⊙O的直径,D是圆上一点,
AD
=
DC
,连接AC,过点D作弦AC的平行线MN.
(1)证明:MN是⊙O的切线;
(2)已知AB=10,AD=6,求弦BC的长.
分析:(1)证MN是⊙O的切线,只需连接OD,证OD⊥MN即可.由于D是弧AC的中点,由垂径定理知OD⊥AC,而MN∥AC,由此可证得OD⊥MN,即可得证.
(2)设OD与AC的交点为E,那么OE就是△ABC的中位线,即BC=2OE;欲求BC,需先求出OE的长.可设OE为x,那么DE=5-x,可分别在Rt△OAE和Rt△ADE中,用勾股定理表示出AE2,即可得到关于x的方程,从而求出x即OE的值,也就能得到BC的长.
解答:精英家教网(1)证明:连接OD,交AC于E,如图所示,
AD
=
DC
,∴OD⊥AC;
又∵AC∥MN,∴OD⊥MN,
所以MN是⊙O的切线.

(2)解:设OE=x,因AB=10,所以OA=5,ED=5-x;
又因AD=6,在Rt△OAE和Rt△DAE中,
AE2=OA2-OE2=AD2-DE2,即:
52-x2=62-(5-x)2,解得x=
7
5

由于AB是⊙O的直径,所以∠ACB=90°,则OD∥BC;
又AO=OB,则OE是△ABC的中位线,所以BC=2OE=
7
5
=
14
5
点评:此题考查了垂径定理、切线的判定,勾股定理以及三角形中位线定理等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O相切;
(2)若OC∥AD,OC交BD于点E,BD=6,CE=4,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A,OC⊥BD于点E.
(1)求证:BC是⊙O的切线;
(2)若BD=12,EC=10,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求△DFB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AB是⊙O直径,∠D=35°,则∠BOC等于(  )

查看答案和解析>>

同步练习册答案